|   | 
Details
   web
Records
Author Valin, H.; Sands, R.D.; van der Mensbrugghe, D. and; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky; Benjamin; Fujimori, S.; Hasegawa, T.; Havlik, P.; and Heyhoe, E.; Kyle, P.; Mason-D’Croz, D.; Paltsev; Sergey; Rolinski, S.; Tabeau, A.; van Meijl, H. and; von Lampe, M.; Willenbockel, D.
Title The future of food demand: Understanding differences in global economic models Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 51-67
Keywords world food demand; socioeconomic pathways; climate change; computable general equilibrium; partial equilibrium; systems
Abstract Understanding the capacity of agricultural systems to feed the world population under climate change requires projecting future food demand. This article reviews demand modeling approaches from 10 global economic models participating in the Agricultural Model Intercomparison and Improvement Project (AgMIP). We compare food demand projections in 2050 for various regions and agricultural products under harmonized scenarios of socioeconomic development, climate change, and bioenergy expansion. In the reference scenario (SSP2), food demand increases by 59-98% between 2005 and 2050, slightly higher than the most recent FAO projection of 54% from 2005/2007. The range of results is large, in particular for animal calories (between 61% and 144%), caused by differences in demand systems specifications, and in income and price elasticities. The results are more sensitive to socioeconomic assumptions than to climate change or bioenergy scenarios. When considering a world with higher population and lower economic growth (SSP3), consumption per capita drops on average by 9\% for crops and 18% for livestock. The maximum effect of climate change on calorie availability is -6% at the global level, and the effect of biofuel production on calorie availability is even smaller.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area (up) Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4752
Permanent link to this record
 

 
Author Dalgaard, T.; Kjeldsen, C.; Meyer-Aurich, A.; Özkan, S.; Rolinski, S.; Köchy, M.; Olesen, J.E.; Brouwer, F.; van den Pol-van Dasselaar, A.; Kipling, R.
Title Farming systems models for regional scale impact assessment in Europe – case studies of N-losses and greenhouse gas emissions Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference Scaling in global, regional and farm models, 2014-09-24 to 2014-09-24
Notes Approved no
Call Number MA @ admin @ Serial 2380
Permanent link to this record
 

 
Author Biewald, A.; Rolinski, S.; Lotze-Campen, H.; Schmitz, C.
Title Global valuation of agricultural, virtual blue water trade measured on a local scale Type Conference Article
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference Conference paper presented at the 10th Annual meeting of the International Water Resource Economics Consortium, Stockholm, Sweden, 2012-08-27 to 2012-08-28
Notes Approved no
Call Number MA @ admin @ Serial 2323
Permanent link to this record
 

 
Author Rolinski, S.; Sætnan, E.
Title Uncertainties in climate change prediction and modelling Type Report
Year 2013 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 1 Issue Pages D-L1.5
Keywords
Abstract As models become increasingly complex and integrated, uncertainty among model  parameters, variables and processes become critical for evaluating model outcomes and  predictions. A framework for understanding uncertainty in climate modelling has been  developed by the IPCC and EEA which provides a framework for discussion of uncertainty  in models in general. Here we report on a review of this framework along with the results  of a survey of sources of uncertainty in livestock and grassland models. Along with the  identification of key sources of uncertainty in livestock and grassland modelling, the  survey highlighted the need for a development of a common typology for uncertainty.  When collaborating across traditionally separate research fields, or when communicating  with stakeholders, differences in understanding, interpretation or emphasis can cause  confusion. Further work in MACSUR should focus on improving model intercomparison  methods to better understand model uncertainties, and improve availability of high  quality datasets which can reduce model uncertainties. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2259
Permanent link to this record
 

 
Author Weindl, I.; Lotze-Campen, H.; Popp, A.; Müller, C.; Havlík, P.; Herrero, M.; Schmitz, C.; Rolinski, S.
Title Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture Type Journal Article
Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 10 Issue 9 Pages 094021
Keywords livestock; climate impacts; land use modeling; adaptation costs; production systems; greenhouse-gas emissions; global change; management implications; developing-countries; crop productivity; change mitigation; food security; model; impacts; carbon
Abstract Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource-and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area (up) Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4718
Permanent link to this record