|   | 
Details
   web
Records
Author Roggero, P.P.
Title IC-FAR – Linking long term observatories with crop system modelling for a better understanding of climate change impact and adaptation strategies for Italian cropping systems Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 77 Issue Pages 136-137
Keywords long-term experiment; Italy
Abstract This special issue includes a sub-set of papers developed in the context of the three-years (2013-16) research project “IC-FAR – Linking long term observatories with crop system modelling for a better understanding of climate change impact and adaptation strategies for Italian cropping systems” (www.icfar.it), funded by the Italian Ministry of Education, University and Research. IC-FAR collects the legacy of some three-four generations of researchers, members of the Italian Society of Agronomy, that from the 1960ies onward established long term agro-ecosystem experiments (LTAE) in various Italian locations, to address a wide range of agronomy research questions. A lot of the results from these LTAE were not yet published or were published as grey literature or in Italian and almost always as a single-site, single-experiment outcome.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1161-0301 ISBN Medium Editorial Material
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4682
Permanent link to this record
 

 
Author Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L.
Title Crop rotation modelling—A European model intercomparison Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 70 Issue Pages 98-111
Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth
Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4660
Permanent link to this record
 

 
Author De Sanctis, G.; Roggero, P.P.; Seddaiu, G.; Orsini, R.; Porter, C.H.; Jones, J.W.
Title Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area Type Journal Article
Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 40 Issue Pages 18-27
Keywords N fertilization; C dynamics; DSSAT; Wheat; Maize; Weed fallow; sandy loam soil; cropping systems; agricultural systems; climate-change; winter-wheat; sequestration; matter; model; fertilization; dynamics
Abstract The differential impact on soil organic carbon (SOC) of applying no tillage (NT) compared to conventional tillage (CT, i.e. mouldboard ploughing), along with three rates of nitrogen (N) fertilizer application (0,90 and 180 kg ha(-1) y(-1)), was studied under rain-fed Mediterranean conditions in a long-term experiment based on a durum wheat-maize rotation, in which crop residues were left on the soil (NT) or incorporated (CT). Observed SOC content following 8 and 12 years of continuous treatment application was significantly higher in the top 10 cm of the soil under NT than CT, but it was similar in the 10-40 cm layer. NT grain yields for both maize and durum wheat were below those attained under CT (on average 32% and 14% lower respectively) at a given rate of N fertilizer application. Soil, climate and crop data over 5 years were used to calibrate DSSAT model in order to simulate the impact of the different management practices over a 50-year period. Good agreement was obtained between observed and simulated values for crops grain yield, above-ground biomass and observed SOC values. Results from the simulations showed that under NT the weeds growing during the intercrop fallow period made a significant contribution to the observed SOC increase. When the contribution of the weed fallow was considered, NT significantly increased SOC in the top 40 cm of the soil at an average rate of 0.43, 0.31 and 0.03 t ha(-1) per year, respectively for 180,90 and 0 kg N ha(-1) year(-1), within the simulated 50 years. Under CT, a significant SOC increase was simulated under N180 and a significant decrease when no fertilizer was supplied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1161-0301 ISBN Medium article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4469
Permanent link to this record
 

 
Author Schils, R.; Olesen, J.E.; Kersebaum, K.-C.; Rijk, B.; Oberforster, M.; Kalyada, V.; Khitrykau, M.; Gobin, A.; Kirchev, H.; Manolova, V.; Manolov, I.; Trnka, M.; Hlavinka, P.; Palosuo, T.; Peltonen-Sainio, P.; Jauhiainen, L.; Lorgeou, J.; Marrou, H.; Danalatos, N.; Archontoulis, S.; Fodor, N.; Spink, J.; Roggero, P.P.; Bassu, S.; Pulina, A.; Seehusen, T.; Uhlen, A.K.; Zylowska, K.; Nierobca, A.; Kozyra, J.; Silva, J.V.; Macas, B.M.; Coutinho, J.; Ion, V.; Takac, J.; Ines Minguez, M.; Eckersten, H.; Levy, L.; Herrera, J.M.; Hiltbrunner, J.; Kryvobok, O.; Kryvoshein, O.; Sylvester-Bradley, R.; Kindred, D.; Topp, C.F.E.; Boogaard, H.; de Groot, H.; Lesschen, J.P.; van Bussel, L.; Wolf, J.; Zijlstra, M.; van Loon, M.P.; van Ittersum, M.K.
Title Cereal yield gaps across Europe Type Journal Article
Year 2018 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.
Volume 101 Issue Pages 109-120
Keywords Wheat, Barley, Grain maize, Crop modelling, Yield potential, Nitrogen; Nitrogen Use Efficiency; Sustainable Intensification; Climate-Change; Land-Use; Wheat; Soil; Agriculture; Impacts; Fertility; Emissions
Abstract Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha(-1) for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets.
Address 2019-01-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1161-0301 ISBN Medium
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5213
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Yeluripati, J.; Xenia, S.; Nendel, C.; Coucheney, E.; Kuhnert, M.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Kiese, R.; Eckersten, H.; Haas, E.; Cammarano, D.; Kassie, B.; Moriondo, M.; Trombi, G.; Bindi, M.; Biernath, C.; Heinlein, F.; Klein, C.; Priesack, E.; Lewan, E.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Asseng, S.; Siebert, S.; Gaiser, T.; Ewert, F.
Title Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops Type Journal Article
Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 80 Issue Pages 100-112
Keywords Crop model; Stratified random sampling; Simple random sampling; Clustering; Up-scaling; Model comparison; Precision gain; species distribution models; systems simulation; weather data; large-scale; design; soil; optimization; growth; apsim; autocorrelation
Abstract We compared the precision of simple random sampling (SimRS) and seven types of stratified random sampling (StrRS) schemes in estimating regional mean of water-limited yields for two crops (winter wheat and silage maize) that were simulated by fourteen crop models. We found that the precision gains of StrRS varied considerably across stratification methods and crop models. Precision gains for compact geographical stratification were positive, stable and consistent across crop models. Stratification with soil water holding capacity had very high precision gains for twelve models, but resulted in negative gains for two models. Increasing the sample size monotonously decreased the sampling errors for all the sampling schemes. We conclude that compact geographical stratification can modestly but consistently improve the precision in estimating regional mean yields. Using the most influential environmental variable for stratification can notably improve the sampling precision, especially when the sensitivity behavior of a crop model is known.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4724
Permanent link to this record