|   | 
Details
   web
Records
Author Wallach, D.; Rivington, M.
Title Standardised methods and protocols based on current best practices to conduct sensitivity analysis Type Report
Year (down) 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C4.2.1
Keywords
Abstract The purpose of this report is to propose a general procedure for sensitivity analysis when used to evaluate system sensitivity to climate change, including uncertainty information. While sensitivity analysis has been largely used to evaluate how uncertainties in inputs or parameters propagate through the model and manifest themselves in uncertainties in model outputs, there is much less experience with sensitivity analysis as a tool for studying how sensitive a system is to changes in inputs. This report should help make clear the differences between these two uses of sensitivity analysis, and provide guidance as to the procedure for using sensitivity analysis for evaluating system sensitivity to climate change. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2100
Permanent link to this record
 

 
Author Wallach, D.; Rivington, M.
Title Identification and quantification of differences between models Type Report
Year (down) 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C4.2.2
Keywords
Abstract A major goal of crop model inter-comparison is model improvement, and an important intermediate step toward that goal is understanding in some detail how models differ, and the consequences of those differences. This report is intended as a first attempt at describing possible techniques for relating differences between model outputs to specific aspects of the models. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2101
Permanent link to this record
 

 
Author Cammarano, D.; Rivington, M.; Matthews, K.; B,; Bellocchi, G.
Title Estimates of crop responses to climate change with quantified ranges of uncertainty Type Report
Year (down) 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C4.1.3
Keywords
Abstract In estimating responses of crops to future climate realisations, it is necessary to understand and differentiate between the sources of uncertainty in climate models and how these lead to errors in estimating the past climate and biases in future projections, and how these affect crop model estimates. This paper investigates the complexities in using climate model projections representing different spatial scales within climate change impacts and adaptation studies. This is illustrated by simulating spring barley with three crop models run using site-specific observed, original (50•50 km) and bias corrected downscaled (site-specific) hindcast (1960-1990) weather data from the HadRM3 Regional Climate Model (RCM). Original and bias corrected downscaled weather data were evaluated against the observed data. The comparisons made between the crop models were in the light of lessons learned from this data evaluation. Though the bias correction downscaling method improved the match between observed and hindcast data, this did not always translate into better matching of crop models estimates. At four sites the original HadRM3 data produced near identical mean simulated yield values as from the observed weather data, despite differences in the weather data, giving a situation of ‘right results for the wrong reasons’. This was likely due to compensating errors in the input weather data and non-linearity in crop models processes, making interpretation of results problematic. Overall, bias correction downscaling improved the quality of simulated outputs. Understanding how biases in climate data manifest themselves in crop models gives greater confidence in the utility of the estimates produced using downscaled future climate projections. The results indicate implications on how future projections of climate change impacts are interpreted. Fundamentally, considerable care is required in determining the impact weather data sources have in climate change impact and adaptation studies, whether from individual models or ensembles. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2098
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S.
Title Crop modelling for integrated assessment of risk to food production from climate change Type Report
Year (down) 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C0.3
Keywords
Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2089
Permanent link to this record
 

 
Author Bellocchi, G.; Rivington, M.; Matthews, K.; Acutis, M.
Title Deliberative processes for comprehensive evaluation of agroecological models. A review Type Journal Article
Year (down) 2015 Publication Agronomy for Sustainable Development Abbreviated Journal Agron. Sust. Developm.
Volume 35 Issue 2 Pages 589-605
Keywords component-oriented programing; deliberative approach; modeling; model evaluation; multiple metrics; stakeholders; decision-support-systems; environmental-models; performance evaluation; groundwater models; farming systems; climate-change; irene-dll; simulation; validation; integration
Abstract The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1774-0746 1773-0155 ISBN Medium Review
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4551
Permanent link to this record