toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Francone, C.; Cassardo, C.; Richiardone, R.; Confalonieri, R. url  doi
openurl 
  Title Sensitivity Analysis and Investigation of the Behaviour of the UTOPIA Land-Surface Process Model: A Case Study for Vineyards in Northern Italy Type Journal Article
  Year 2012 Publication Boundary-Layer Meteorology Abbreviated Journal Boundary-Layer Meteorology  
  Volume 144 Issue 3 Pages 419-430  
  Keywords energy balance; hydrological balance; land-surface model; morris method; vegetation cover; vitis vinifera l.; atmosphere transfer scheme; environmental-models; energy-balance; uncertainty; simulation; canopy  
  Abstract We used sensitivity-analysis techniques to investigate the behaviour of the land-surface model UTOPIA while simulating the micrometeorology of a typical northern Italy vineyard (Vitis vinifera L.) under average climatic conditions. Sensitivity-analysis experiments were performed by sampling the vegetation parameter hyperspace using the Morris method and quantifying the parameter relevance across a wide range of soil conditions. This method was used since it proved its suitability for models with high computational time or with a large number of parameters, in a variety of studies performed on different types of biophysical models. The impact of input variability was estimated on reference model variables selected among energy (e.g. net radiation, sensible and latent heat fluxes) and hydrological (e.g. soilmoisture, surface runoff, drainage) budget components. Maximum vegetation cover and maximum leaf area index were ranked as the most relevant parameters, with sensitivity indices exceeding the remaining parameters by about one order of magnitude. Soil variability had a high impact on the relevance of most of the vegetation parameters: coefficients of variation calculated on the sensitivity indices estimated for the different soils often exceeded 100 %. The only exceptions were represented by maximum vegetation cover and maximum leaf area index, which showed a low variability in sensitivity indices while changing soil type, and confirmed their key role in affecting model results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8314 1573-1472 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4470  
Permanent link to this record
 

 
Author (up) Francone, C.; Katul, G.G.; Cassardo, C.; Richiardone, R. url  doi
openurl 
  Title Turbulent transport efficiency and the ejection-sweep motion for momentum and heat on sloping terrain covered with vineyards Type Journal Article
  Year 2012 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 162-163 Issue Pages 98-107  
  Keywords coherent motion; cumulant expansions; heat and momentum transfer; sloping terrain; vineyards; planar fit method; boundary-layers; reynolds stress; dense canopies; plant canopies; flow; fluxes; forest; fields; hills  
  Abstract In boundary layer flows, it is now recognized that the net momentum and mass exchange rates are dominated by the statistical properties of ejecting and sweeping motion often linked to the presence of coherent turbulent structures. Over vineyards, three main factors impact the transport properties of such coherent motion: presence of sloping terrain, variations in leaf area index (LAI) during the growing season, and thermal stratification. The effect of these factors on momentum and heat transport is explored for three vineyard sites situated on different slopes. All three sites experience similar seasonal variation in LAI and mean wind conditions. The analysis is carried out using a conventional quadrant analysis technique and is tested against two models approximating the joint probability density function (JPDF) of the flow variables. It is demonstrated that a Gaussian JPDF explains much of the updraft and downdraft statistical contributions to heat and momentum transport efficiencies for all three sites. An incomplete or truncated third-order cumulant expansion method (ICEM) of the JPDF that retains only the mixed moments and ignores the skewness contributions describes well all the key properties of ejections and sweeps for all slopes, LAI, and stability classes. The implication of these findings for diagnosing potential failures of gradient-diffusion theory over complex terrain is discussed. Because only lower order moments are needed to describe the main characteristics of the JPDF, the use of the Moving Equilibrium Hypothesis (MEH) to predict these moments from the locally measured sensible heat flux and friction velocity is explored. Provided the planar fit coordinate transformation is applied to the data, the MEH can describe these statistical moments at all three sites regardless of terrain slopes and LAI values. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4471  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: