toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P. url  openurl
  Title (up) Classifying simulated wheat yield responses to changes in temperature and precipitation across a European transect Type Conference Article
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4921  
Permanent link to this record
 

 
Author Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; Ferrise, R.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takáč, J.; Hlavinka, P.; Trnka, M.; Rötter, R.P. url  doi
openurl 
  Title (up) Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization Type Journal Article
  Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 154 Issue 7 Pages 1218-1240  
  Keywords northern growing conditions; climate-change impacts; spring barley; systems simulation; farming systems; soil properties; winter-wheat; dynamics; growth; management  
  Abstract Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area index (LAI) and yield observations. The models were then tested against new data for 2009 and their performance was assessed and compared with both the two calibration years and the test year. For the calibration period, root mean square error between measurements and simulated grain dry matter yields ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi-model mean could not correct systematic errors in model simulations. Variation in soil N mineralization and LAI development due to differences in weather not captured by the models most likely was the main reason for their unsatisfactory performance. This suggests the need for model improvement in soil N mineralization as a function of soil temperature and moisture. Furthermore, specific weather event impacts such as low temperatures after emergence in 2009, tending to enhance tillering, and a high precipitation event just before harvest in 2008, causing possible yield penalties, were not captured by any of the models compared in the current study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4713  
Permanent link to this record
 

 
Author Maiorano, A.; Martre, P.; Asseng, S.; Ewert, F.; Müller, C.; Rötter, R.P.; Ruane, A.C.; Semenov, M.A.; Wallach, D.; Wang, E.; Alderman, P.D.; Kassie, B.T.; Biernath, C.; Basso, B.; Cammarano, D.; Challinor, A.J.; Doltra, J.; Dumont, B.; Rezaei, E.E.; Gayler, S.; Kersebaum, K.C.; Kimball, B.A.; Koehler, A.-K.; Liu, B.; O’Leary, G.J.; Olesen, J.E.; Ottman, M.J.; Priesack, E.; Reynolds, M.; Stratonovitch, P.; Streck, T.; Thorburn, P.J.; Waha, K.; Wall, G.W.; White, J.W.; Zhao, Z.; Zhu, Y. doi  openurl
  Title (up) Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue Pages 5-20  
  Keywords Impact uncertainty; High temperature; Model improvement; Multi-model ensemble; Wheat crop model  
  Abstract To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT world-wide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures >24 °C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Language Summary Language Newsletter July 2016 Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area CropM Expedition Conference  
  Notes CropMwp;wos; ft=macsur; wsnot_yet; Approved no  
  Call Number MA @ admin @ Serial 4776  
Permanent link to this record
 

 
Author Ewert, F.; Boote, K.J.; Rötter, R.P.; Thorburn, P.; Nendel, C. (eds) openurl 
  Title (up) Crop modelling for agriculture and food security under global change. Abstracts. International Crop Modelling Symposium iCROPM2016, 15-17 March 2016, Berlin, Germany Type Book Whole
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM; MACSUR_ACK  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor Ewert, F.; Boote, K.J.; Rötter, R.P.; Thorburn, P.; Nendel, C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2428  
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S. url  openurl
  Title (up) Crop modelling for integrated assessment of risk to food production from climate change Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C0.3  
  Keywords  
  Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2089  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: