|   | 
Details
   web
Records
Author Rötter, R.P.; Pirttioja, N.K.; Fronzek, S.; Carter, T.; Palosuo, T.; et al.
Title Impact response surface analysis of temperature and precipitation for wheat along a European transect Type Conference Article
Year (down) 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Minneapolis (U.S.A) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference AgMIP and partners session at tripartite meetings (ASA-CSSA-SSA) at Minneapolis/USA, 2015-11-15 to 2015-11-17, Minneapolis
Notes Approved no
Call Number MA @ admin @ Serial 2769
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.K.; Palosuo, T.; Kassie, B.T.; Paff, K.; Tao, F.; Chen, Y.; Asseng, S.; et al.
Title Yield gap and variability analysis for different aro-technologies for maize and wheat (YGV study) Type Conference Article
Year (down) 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Ithaca (U.S.A.) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2nd Global Food Security Conference, 2015-10-10- to 2015-10-15, Ithaca
Notes Approved no
Call Number MA @ admin @ Serial 2770
Permanent link to this record
 

 
Author Rötter, R.P.; Tao, F.; Höhn, J.G.; Palosuo, T.
Title Use of crop simulation modelling to aid ideotype design of future cereal cultivars Type Journal Article
Year (down) 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3463-3476
Keywords Breeding/*methods; Climate Change; *Computer Simulation; Ecotype; Edible Grain/*growth & development; *Models, Theoretical; cereals; climate extremes; crop growth simulation; ensemble modelling; future cultivars; genetic modelling; ideotype breeding; model improvement; model-aided design
Abstract A major challenge of the 21st century is to achieve food supply security under a changing climate and roughly a doubling in food demand by 2050 compared to present, the majority of which needs to be met by the cereals wheat, rice, maize, and barley. Future harvests are expected to be especially threatened through increased frequency and severity of extreme events, such as heat waves and drought, that pose particular challenges to plant breeders and crop scientists. Process-based crop models developed for simulating interactions between genotype, environment, and management are widely applied to assess impacts of environmental change on crop yield potentials, phenology, water use, etc. During the last decades, crop simulation has become important for supporting plant breeding, in particular in designing ideotypes, i.e. ‘model plants’, for different crops and cultivation environments. In this review we (i) examine the main limitations of crop simulation modelling for supporting ideotype breeding, (ii) describe developments in cultivar traits in response to climate variations, and (iii) present examples of how crop simulation has supported evaluation and design of cereal cultivars for future conditions. An early success story for rice demonstrates the potential of crop simulation modelling for ideotype breeding. Combining conventional crop simulation with new breeding methods and genetic modelling holds promise to accelerate delivery of future cereal cultivars for different environments. Robustness of model-aided ideotype design can further be enhanced through continued improvements of simulation models to better capture effects of extremes and the use of multi-model ensembles.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4804
Permanent link to this record
 

 
Author Ewert, F.; van Bussel, L.G.J.; Zhao, G.; Hoffmann, H.; Gaiser, T.; Specka, X.; Nendel, C.; Kersebaum, K.-C.; Sosa, C.; Lewan, E.; Yeluripati, J.; Kuhnert, M.; Tao, F.; Rötter, R.P.; Constantin, J.; Raynal, H.; Wallach, D.; Teixeira, E.; Grosz, B.; Bach, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Kiese, R.; Haas, E.; Eckersten, H.; Trombi, G.; Bindi, M.; Klein, C.; Biernath, C.; Heinlein, F.; Priesack, E.; Cammarano, D.; Asseng, S.; Elliott, J.; Glotter, M.; Basso, B.; Baigorria, G.A.; Romero, C.C.; Moriondo, M.
Title Uncertainties in Scaling up Crop Models for Large Area Climate-change Impact Assessments Type Book Chapter
Year (down) 2015 Publication Abbreviated Journal
Volume Issue Pages 261-277
Keywords CropM;
Abstract
Address
Corporate Author Thesis
Publisher Imperial College Press Place of Publication London Editor Rosenzweig, C.; Hillel, D.
Language Summary Language Original Title
Series Editor Series Title Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments — Joint Publication with American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America (In 2 Parts) Abbreviated Series Title
Series Volume ICP Series on Climate Change Impacts, Adaptation, Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2427
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P.
Title Heat stress impacts on wheat growth and yield were reduced in the Huang-Huai-Hai Plain of China in the past three decades Type Journal Article
Year (down) 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 71 Issue Pages 44-52
Keywords adaptation; crop production; cultivars; extreme climate; impacts; phenology; high-temperature stress; climate-change; winter-wheat; spring wheat; crop yields; day length; trends; variability; senescence; phenology
Abstract Heat stress impacts on crop growth and yield have been investigated by controlled-environment experiments, however little is known about the impacts under field conditions at large spatial and temporal scales, particularly in a setting with farmers’ autonomous adaptations. Here, using detailed experiment Observations at 34 national agricultural meteorological stations spanning from 1981 to 2009 in the Huang-Huai-Hai Plain (HHHP) of China, we investigated the changes in climate and heat stress during wheat reproductive growing period (from heading to maturity) and the impacts of climate change and heat stress on reproductive growing duration (RGD) and yield in a setting with farmers’ autonomous adaptations. We found that RGD and growing degree days above 0 degrees C (GDD) from heading to maturity increased, which increased yield by similar to 14.85%, although heat stress had negative impacts on RGD and yield. During 1981-2009, high temperature (>34 degrees C) degree days (HDD) increased in the northern part, however decreased in the middle and southern parts of HHHP due to advances in heading and maturity dates. Change in HDD, together with increase in GDD and decrease in solar radiation (SRD), jointly increased wheat yield in the northern and middle parts but reduced it in the southern part of HHHP. During the study period, increase in GDD and decrease in SRD had larger impacts on yield than change in HDD. However, with climate warming of 2 degrees C, damage of heat stress on yield may offset a large portion of the benefits from increases in RGD and GDD, and eventually result in net negative impacts on yield in the northern part of HHHP. Our study showed that shifts in cultivars and wheat production system dynamics in the past three decades reduced heat stress impacts in the HHHP. The insights into crop response and adaptation to climate change and climate extremes provide excellent evidences and basis for improving climate change impact study and designing adaptation measures for the future. (C) 2015 Elsevier B.V. All rights reserved.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4743
Permanent link to this record