|   | 
Details
   web
Records
Author Angulo, C.; Gaiser, T.; Rötter, R.P.; Børgesen, C.D.; Hlavinka, P.; Trnka, M.; Ewert, F.
Title (down) ‘Fingerprints’ of four crop models as affected by soil input data aggregation Type Journal Article
Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 61 Issue Pages 35-48
Keywords crop model; soil data; spatial resolution; yield distribution; aggregation; us great-plains; climate-change; integrated assessment; simulating wheat; yields; scale; productivity; uncertainty; variability; responses
Abstract • Systematic analysis of the influence of spatial soil data resolution on simulated regional yields and total growing season evapotranspiration. • The responses of four crop models of different complexity are compared. • Differences between models are larger than the effect of the chosen spatial soil data resolution. • Low influence of soil data resolution due to: high precipitation amount, methods for calculating water retention and method of data aggregation. The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form of frequency distributions, depicted by bean-plots. In both regions, soil data aggregation had very small influence on the shape and range of frequency distributions of simulated yield and simulated total growing season evapotranspiration for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation to evaluate model results on the basis of frequency distributions since these offer quick and better insight into the distribution of simulation results as compared to summary statistics only. Finally, our results support conclusions from other studies about the usefulness of considering a multi-model approach to quantify the uncertainty in simulated yields introduced by the crop growth simulation approach when exploring the effects of scaling for regional yield impact assessments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4511
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.K.; Palosuo, T.; Kassie, B.T.; Paff, K.; Tao, F.; Chen, Y.; Asseng, S.; et al.
Title (down) Yield gap and variability analysis for different aro-technologies for maize and wheat (YGV study) Type Conference Article
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Ithaca (U.S.A.) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2nd Global Food Security Conference, 2015-10-10- to 2015-10-15, Ithaca
Notes Approved no
Call Number MA @ admin @ Serial 2770
Permanent link to this record
 

 
Author de Wit, A.; Boogaard, H.; van Diepen, K.; van Kraalingen, D.; Rötter, R.; Supit, I.; Wolf, J.; van Ittersum, M.
Title (down) WOFOST developer’s response to article by Stella et al., Environmental Modelling & Software 59 (2014): 44–58 Type Journal Article
Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 73 Issue Pages 57-59
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Letter
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4699
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Tao, F.; Pirttioja, N.; Fronzek, S.; Palosuo, T.; Carter, T.R.; Bindi, M.; Höhn, J.G.; Kersebaum, K.C.; Trnka, M.; Hoffmann, H.; Baranowski, P.; Buis, S.; Cammarano, D.; Deligios, P.A.U.-, P.H.; Minet, J.; Montesino, M.; Porter, J.; Recio, J.; Ruget, F.; Sanz, A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Ventrella, D.; Wit, A.D.; Rötter, R.P.
Title (down) Wheat yield potential in Europe under climate change explored by adaptation response surfaces Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Montpellier (France) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 6th AgMIP Global Workshop, 2016-06-28 to 2016-06-30, Montpellier, France
Notes Approved no
Call Number MA @ admin @ Serial 4886
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Van Bussel, L.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Nendel, C.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Roggero, P.P.; Rötter, R.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Kiese, R.; Wang, E.; Ewert, F.
Title (down) Weather data aggregation’s effects on simulation of cropping systems: a model, production system and crop comparison Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Interactions of climate, soil and management practices in cropping systems can be simulated at different scales to provide information for decision making. Low resolution simulation need less effort, but important details could be lost through data aggregation effects (DAEs). This paper aims to provide a general method to assess the DAEs on weather data and the simulation of cropping systems, and further investigate how the DAEs vary with changing crop models, crops, variables and production systems. A 30-year continuous cropping system was simulated for winter wheat and silage maize and potential, water-limited and water-nitrogen-limited production situations. Climate data of 1 km resolution and aggregations to resolutions of 10 to 100 km was used as input for the simulations. The data aggregation narrowed the variation of weather data and DAEs increased with increasingly coarser spatial resolution, causing the loss of hot spots in simulated results. Spatial patterns were similar across different resolutions. Consistent with DAEs on weather data, the DAEs on simulated yield (0 to 1.2 t ha-1 for winter wheat and 0 to 1.7 t ha-1 for silage maize), evapotranspiration (3 to 45 mm yr-1 for winter wheat and 4 to 40 mm yr-1 for silage maize), and water use efficiency (0.02 to 0.25 kg m-3­ for winter wheat and 0.04 to 0.4 kg m-3­ for silage maize), increased with coarser spatial resolution. Thus, if spatial information is needed for local management decisions, higher resolution is needed to adequately capture the spatial heterogeneity or hot spots in the region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5141
Permanent link to this record