toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Toscano, P.; Ranieri, R.; Matese, A.; Vaccari, F.P.; Gioli, B.; Zaldei, A.; Silvestri, M.; Ronchi, C.; La Cava, P.; Porter, J.R.; Miglietta, F. url  doi
openurl 
  Title Durum wheat modeling: The Delphi system, 11 years of observations in Italy Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 43 Issue Pages 108-118  
  Keywords durum wheat; crop modeling; yield forecasting; calibration; scenarios; decision-support-system; crop simulation-model; ceres-wheat; mediterranean environment; winter-wheat; scaling-up; variability; quality; growth; water  
  Abstract ► Delphi system, based on AFRCWHEAT2 model, for durum wheat forecast. ► AFRCWHEAT2 model was calibrated and validated for three years. ► A scenario approach was applied to simulation of durum wheat yield. ► Operational mode for eleven years in rainfed and water limiting conditions. ► Accurate forecast as an useful planning tool. Crop models are frequently used in ecology, agronomy and environmental sciences for simulating crop and environmental variables at a discrete time step. The aim of this work was to test the predictive capacity of the Delphi system, calibrated and determined for each pedoclimatic factor affecting durum wheat during phenological development. at regional scale. We present an innovative system capable of predicting spatial yield variation and temporal yield fluctuation in long-term analysis, that are the main purposes of regional crop simulation study. The Delphi system was applied to simulate growth and yield of durum wheat in the major Italian supply basins (Basilicata, Capitanata, Marche, Tuscany). The model was validated and evaluated for three years (1995-1997) at 11 experimental fields and then used in operational mode for eleven years (1999-2009), showing an excellent/good accuracy in predicting grain yield even before maturity for a wide range of growing conditions in the Mediterranean climate, governed by different annual weather patterns. The results were evaluated on the basis of regression and normalized root mean squared error with known crop yield statistics at regional level. (c) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4596  
Permanent link to this record
 

 
Author Ghaley, B.B.; Vesterdal, L.; Porter, J.R. url  doi
openurl 
  Title Quantification and valuation of ecosystem services in diverse production systems for informed decision-making Type Journal Article
  Year 2014 Publication Environmental Science & Policy Abbreviated Journal Environmental Science & Policy  
  Volume 39 Issue Pages 139-149  
  Keywords bio-physical quantification; combined food and energy system; economic valuation field measurements; land management; marketable and non-marketable ecosystem services; land-use change; carbon; farm; efficiency; crops; china; model; scale; field  
  Abstract The empirical evidence of decline in ecosystem services (ES) over the last century has reinforced the call for ES quantification, monitoring and valuation. Usually, only provisioning ES are marketable and accounted for, whereas regulating, supporting and cultural ES are typically non-marketable and overlooked in connection with land-use or management decisions. The objective of this study was to quantify and value total ES (marketable and non-marketable) of diverse production systems and management intensities in Denmark to provide a basis for decisions based on economic values. The production systems were conventional wheat (Cwheat), a combined food and energy (CFE) production system and beech forest. Marketable (provisioning ES) and non-marketable ES (supporting, regulating and cultural) ES were quantified by dedicated on-site field measurements supplemented by literature data. The value of total ES was highest in CFE (US$ 3142 ha(-1) yr(-1)) followed by Cwheat (US$ 2767 ha (1) yr(-1)) and beech forest (US$ 2328 ha(-1) yr(-1)). As the production system shifted from Cwheat – CFE-beech, the marketable ES share decreased from 88% to 75% in CFE and 55% in beech whereas the non-marketable ES share increased to 12%, 25% and 45% of total ES in Cwheat, CFE and beech respectively, demonstrating production system and management effects on ES values. Total ES valuation, disintegrated into marketable and non-marketable share is a potential way forward to value ES and `tune’ our production systems for enhanced ES provision. Such monetary valuation can be used by policy makers and land managers as a tool to assess ES value and monitor the sustained flow of ES. The application of ES-based valuation for land management can enhance ES provision for maintaining the productive capacity of the land without depending on the external fossil-based fertilizer and chemical input. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1462-9011 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4623  
Permanent link to this record
 

 
Author Refsgaard, J.C.; Arnbjerg-Nielsen, K.; Drews, M.; Halsnaes, K.; Jeppesen, E.; Madsen, H.; Markandya, A.; Olesen, J.E.; Porter, J.R.; Christensen, J.H. url  doi
openurl 
  Title The role of uncertainty in climate change adaptation strategies – a Danish water management example Type Journal Article
  Year 2013 Publication Mitigation and Adaptation Strategies for Global Change Abbreviated Journal Mitig. Adapt. Strateg. Glob. Change  
  Volume 18 Issue 3 Pages 337-359  
  Keywords Climate change; Adaptation; Uncertainty; Risk; Water sectors; Multi-disciplinary; change impacts; global change; winter-wheat; models; scenarios; ensembles; denmark; vulnerability; community; knowledge  
  Abstract We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1381-2386 1573-1596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4613  
Permanent link to this record
 

 
Author Bennetzen, E.H.; Smith, P.; Soussana, J.-F.; Porter, J.R. url  doi
openurl 
  Title Identity-based estimation of greenhouse gas emissions from crop production: case study from Denmark Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 41 Issue Pages 66-72  
  Keywords kaya identity; kaya-porter identity; crop production; greenhouse gas emission; energy intensity; mitigation; food system; agriculture; mitigation; energy; opportunities; inventory; europe; policy; land  
  Abstract In order to feed the world we need innovative thinking on how to increase agricultural production whilst also mitigating climate change. Agriculture and land-use change are responsible for approximately one-third of total anthropogenic greenhouse gas (GHG) emissions but hold potential for climate change mitigation but are only tangentially included in UNFCCC mitigation policies. To get a full estimate of GHG emissions from agricultural crop production both energy-based emissions and land-based emissions need to be accounted for. Furthermore, the major mitigation potential is likely to be indirect reduction of emissions i.e. reducing emissions per unit of agricultural product rather than the absolute emissions per se. Hence the system productivity must be included in the same analysis. This paper presents the Kaya-Porter identity, derived from the Maya identity, as a new way to calculate GHG emissions from agricultural crop production by deconstructing emissions into five elements; the GHG intensity of the energy used for production (kg CO2-eq./MJ), energy intensity of the production (MJ/kg dry matter), areal productivity (kg dry matter/ha), areal land-based GHG emissions (CO2-eq./ha) and area (ha). These separate elements in the identity can be targeted in emissions reduction and mitigation policies and are useful to analyse past and current trends in emissions and to explore future scenarios. Using the Kaya-Porter identity we have performed a case study on Danish crop production and find emissions to have been reduced by 12% from 1992 to 2008, whilst yields per unit area have remained constant. Both land-based emissions and energy-based emissions have decreased, mainly due to a 41% reduction in nitrogen fertilizer use. The initial identity based analysis for crop production presented here needs to be extended to include livestock to reflect the entire agricultural production and food demand sectors, thereby permitting analysis of the trade-offs between animal and plant food production, human dietary preferences and population and resulting GHG emissions. (C) 2012 Elsevier B.V. All rights reserved.  
  Address 2016-07-22  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4581  
Permanent link to this record
 

 
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. url  doi
openurl 
  Title Can crop-climate models be accurate and precise? A case study for wheat production in Denmark Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 202 Issue Pages 51-60  
  Keywords Uncertainty; Model intercomparison; Bayesian approach; Climate change; Wheat; Denmark; uncertainty analysis; simulation-models; bayesian-approach; change; impact; yields; variability; projections; scale; calibration; framework  
  Abstract Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4572  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: