toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Humpenöder, F.; Popp, A.; Stevanovic, M.; Müller, C.; Bodirsky, B.L.; Bonsch, M.; Dietrich, J.P.; Lotze-Campen, H.; Weindl, I.; Biewald, A.; Rolinski, S. url  doi
openurl 
  Title Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation Type Journal Article
  Year 2015 Publication Environmental Science and Technology Abbreviated Journal Environ Sci Technol  
  Volume 49 Issue 11 Pages 6731-6739  
  Keywords  
  Abstract Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4998  
Permanent link to this record
 

 
Author Biewald, A.; Lotze-Campen, H.; Otto, I.; Brinckmann, N.; Bodirsky, B.; Weindl, I.; Popp, A.; Schellnhuber, H.J. url  openurl
  Title The Impact of Climate Change on Costs of Food and People Exposed to Hunger at Subnational Scale Type Report
  Year 2015 Publication PIK Report Abbreviated Journal  
  Volume 128 Issue Pages 73  
  Keywords ftnotmacsur  
  Abstract Climate change and socioeconomic developments will have a decisive impact on people exposed to hunger. This study analyses climate change impacts on agriculture and potential implications for the occurrence of hunger under different socioeconomic scenarios for 2030, focusing on the world regions most affected by poverty today: the Middle East and North Africa, South Asia, and Sub-Saharan Africa. We use a spatially explicit, agroeconomic land-use model to assess agricultural vulnerability to climate change. The aims of our study are to provide spatially explicit projections of climate change impacts on Costs of Food, and to combine them with spatially explicit hunger projections for the year 2030, both under a poverty, as well as a prosperity scenario. Our model results indicate that while average yields decrease with climate change in all focus regions, the impact on the Costs of Food is very diverse. Costs of Food increase most in the Middle East and North Africa, where available agricultural land is already fully utilized and options to import food are limited. The increase is least in Sub-Saharan Africa, since production there can be shifted to areas which are only marginally affected by climate change and imports from other regions increase. South Asia and Sub-Saharan Africa can partly adapt to climate change, in our model, by modifying trade and expanding agricultural land. In the Middle East and North Africa, almost the entire population is affected by increasing Costs of Food, but the share of people vulnerable to hunger is relatively low, due to relatively strong economic development in these projections. In Sub-Saharan Africa, the Vulnerability to Hunger will persist, but increases in Costs of Food are moderate. While in South Asia a high share of the population suffers from increases in Costs of Food and is exposed to hunger, only a negligible number of people will be exposed at extreme levels. Independent of the region, the impacts of climate change are less severe in a richer and more globalized world. Adverse climate impacts on the Costs of Food could be moderated by promoting technological progress in agriculture. Improving market access would be advantageous for farmers, providing the opportunity to profitably increase production in the Middle East and North Africa as well as in South Asia, but may lead to increasing Costs of Food for consumers. In the long-term perspective until 2080, the consequences of climate change will become even more severe: while in 2030 56% of the global population may face increasing Costs of Food in a poor and fragmented world, in 2080 the proportion will rise to 73%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Potsdam Editor  
  Language Summary Language (up) Original Title  
  Series Editor Potsdam-Institut für Klimafolgenforschung Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 5000  
Permanent link to this record
 

 
Author Wang, X.; Biewald, A.; Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Humpenöder, F.; Bodirsky, B.L.; Popp, A. url  doi
openurl 
  Title Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns Type Journal Article
  Year 2016 Publication Ecological Economics Abbreviated Journal Ecol. Econ.  
  Volume 122 Issue Pages 12-24  
  Keywords  
  Abstract Highlights • Governance impacts on land use dynamics are modeled at the global scale with an agro-economic dynamic optimization model. • Improved governance performance lowers deforestation, reduces cropland expansion and increases agricultural yield. • Good governance makes a decisive difference in investment for increasing yields in developing regions. • Weak governance increases food prices, particularly in Sub-Saharan Africa and Southeast Asia. • Improving governance performance has significant impacts on poverty reduction. Abstract Deforestation, mainly caused by unsustainable agricultural expansion, results in a loss of biodiversity and an increase in greenhouse gas emissions, as well as impinges on local livelihoods. Countries’ governance performance, particularly with respect to property rights security, exerts significant impacts on land-use patterns by affecting agricultural yield-related technological investment and cropland expansion. This study aims to incorporate governance factors into a recursive agro-economic dynamic model to simulate governance impacts on land-use patterns at the global scale. Due to the difficulties of including governance indicators directly into numerical models, we use lending interest rates as discount rates to reflect risk-accounting factors associated with different governance scenarios. In addition to a reference scenario, three scenarios with high, low and mixed divergent discount rates are formed to represent weak, strong and fragmented governance. We find that weak governance leads to slower yield growth, increased cropland expansion and associated deforestation, mainly in Latin America, Sub-Saharan Africa, South Asia and Southeast Asia. This is associated with increasing food prices, particularly in Sub-Saharan Africa and Southeast Asia. By contrast, strong governance performance provides a stable political and economic situation which may bring down deforestation rates, stimulate investment in agricultural technologies, and induce fairly strong decreases in food prices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5002  
Permanent link to this record
 

 
Author Stevanović, M.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Müller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I. url  doi
openurl 
  Title The impact of high-end climate change on agricultural welfare Type Journal Article
  Year 2016 Publication Science Advances Abbreviated Journal Sci. Adv.  
  Volume 2 Issue 8 Pages e1501452  
  Keywords ftnotmacsur  
  Abstract Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5003  
Permanent link to this record
 

 
Author Lotze-Campen, H.; Verburg, P.H.; Popp, A.; Lindner, M.; Verkerk, P.J.; Moiseyev, A.; Schrammeijer, E.; Helming, J.; Tabeau, A.; Schulp, C.J.E.; van der Zanden, E.H.; Lavalle, C.; e Silva, F.B.; Walz, A.; Bodirsky, B. url  doi
openurl 
  Title A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways Type Journal Article
  Year 2018 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume 18 Issue 3 Pages 751-762  
  Keywords Land use change; Integrated modelling; Cross-scale interaction; Nature protection; Impact assessment  
  Abstract Protection of natural or semi-natural ecosystems is an important part of societal strategies for maintaining biodiversity, ecosystem services, and achieving overall sustainable development. The assessment of multiple emerging land use trade-offs is complicated by the fact that land use changes occur and have consequences at local, regional, and even global scale. Outcomes also depend on the underlying socio-economic trends. We apply a coupled, multi-scale modelling system to assess an increase in nature protection areas as a key policy option in the European Union (EU). The main goal of the analysis is to understand the interactions between policy-induced land use changes across different scales and sectors under two contrasting future socio-economic pathways. We demonstrate how complementary insights into land system change can be gained by coupling land use models for agriculture, forestry, and urban areas for Europe, in connection with other world regions. The simulated policy case of nature protection shows how the allocation of a certain share of total available land to newly protected areas, with specific management restrictions imposed, may have a range of impacts on different land-based sectors until the year 2040. Agricultural land in Europe is slightly reduced, which is partly compensated for by higher management intensity. As a consequence of higher costs, total calorie supply per capita is reduced within the EU. While wood harvest is projected to decrease, carbon sequestration rates increase in European forests. At the same time, imports of industrial roundwood from other world regions are expected to increase. Some of the aggregate effects of nature protection have very different implications at the local to regional scale in different parts of Europe. Due to nature protection measures, agricultural production is shifted from more productive land in Europe to on average less productive land in other parts of the world. This increases, at the global level, the allocation of land resources for agriculture, leading to a decrease in tropical forest areas, reduced carbon stocks, and higher greenhouse gas emissions outside of Europe. The integrated modelling framework provides a method to assess the land use effects of a single policy option while accounting for the trade-offs between locations, and between regional, European, and global scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area TradeM Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5004  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: