|   | 
Details
   web
Records
Author Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P.
Title Simulating and delineating future land change trajectories across Europe Type Journal Article
Year 2015 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change
Volume Issue Pages in press
Keywords land use change; land system; modeling; scenario; Europe; ecosystem services
Abstract Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4996
Permanent link to this record
 

 
Author Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H.
Title Global Food Demand Scenarios for the 21st Century Type Journal Article
Year 2015 Publication PLoS One Abbreviated Journal PLoS One
Volume 10 Issue 11 Pages e0139201
Keywords
Abstract Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4997
Permanent link to this record
 

 
Author Humpenöder, F.; Popp, A.; Stevanovic, M.; Müller, C.; Bodirsky, B.L.; Bonsch, M.; Dietrich, J.P.; Lotze-Campen, H.; Weindl, I.; Biewald, A.; Rolinski, S.
Title Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation Type Journal Article
Year 2015 Publication Environmental Science and Technology Abbreviated Journal Environ Sci Technol
Volume 49 Issue 11 Pages 6731-6739
Keywords
Abstract Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4998
Permanent link to this record
 

 
Author Biewald, A.; Lotze-Campen, H.; Otto, I.; Brinckmann, N.; Bodirsky, B.; Weindl, I.; Popp, A.; Schellnhuber, H.J.
Title The Impact of Climate Change on Costs of Food and People Exposed to Hunger at Subnational Scale Type Report
Year 2015 Publication PIK Report Abbreviated Journal
Volume 128 Issue Pages 73
Keywords ftnotmacsur
Abstract Climate change and socioeconomic developments will have a decisive impact on people exposed to hunger. This study analyses climate change impacts on agriculture and potential implications for the occurrence of hunger under different socioeconomic scenarios for 2030, focusing on the world regions most affected by poverty today: the Middle East and North Africa, South Asia, and Sub-Saharan Africa. We use a spatially explicit, agroeconomic land-use model to assess agricultural vulnerability to climate change. The aims of our study are to provide spatially explicit projections of climate change impacts on Costs of Food, and to combine them with spatially explicit hunger projections for the year 2030, both under a poverty, as well as a prosperity scenario. Our model results indicate that while average yields decrease with climate change in all focus regions, the impact on the Costs of Food is very diverse. Costs of Food increase most in the Middle East and North Africa, where available agricultural land is already fully utilized and options to import food are limited. The increase is least in Sub-Saharan Africa, since production there can be shifted to areas which are only marginally affected by climate change and imports from other regions increase. South Asia and Sub-Saharan Africa can partly adapt to climate change, in our model, by modifying trade and expanding agricultural land. In the Middle East and North Africa, almost the entire population is affected by increasing Costs of Food, but the share of people vulnerable to hunger is relatively low, due to relatively strong economic development in these projections. In Sub-Saharan Africa, the Vulnerability to Hunger will persist, but increases in Costs of Food are moderate. While in South Asia a high share of the population suffers from increases in Costs of Food and is exposed to hunger, only a negligible number of people will be exposed at extreme levels. Independent of the region, the impacts of climate change are less severe in a richer and more globalized world. Adverse climate impacts on the Costs of Food could be moderated by promoting technological progress in agriculture. Improving market access would be advantageous for farmers, providing the opportunity to profitably increase production in the Middle East and North Africa as well as in South Asia, but may lead to increasing Costs of Food for consumers. In the long-term perspective until 2080, the consequences of climate change will become even more severe: while in 2030 56% of the global population may face increasing Costs of Food in a poor and fragmented world, in 2080 the proportion will rise to 73%.
Address
Corporate Author Thesis
Publisher Place of Publication Potsdam Editor
Language (up) Summary Language Original Title
Series Editor Potsdam-Institut für Klimafolgenforschung Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 5000
Permanent link to this record
 

 
Author Wang, X.; Biewald, A.; Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Humpenöder, F.; Bodirsky, B.L.; Popp, A.
Title Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns Type Journal Article
Year 2016 Publication Ecological Economics Abbreviated Journal Ecol. Econ.
Volume 122 Issue Pages 12-24
Keywords
Abstract Highlights • Governance impacts on land use dynamics are modeled at the global scale with an agro-economic dynamic optimization model. • Improved governance performance lowers deforestation, reduces cropland expansion and increases agricultural yield. • Good governance makes a decisive difference in investment for increasing yields in developing regions. • Weak governance increases food prices, particularly in Sub-Saharan Africa and Southeast Asia. • Improving governance performance has significant impacts on poverty reduction. Abstract Deforestation, mainly caused by unsustainable agricultural expansion, results in a loss of biodiversity and an increase in greenhouse gas emissions, as well as impinges on local livelihoods. Countries’ governance performance, particularly with respect to property rights security, exerts significant impacts on land-use patterns by affecting agricultural yield-related technological investment and cropland expansion. This study aims to incorporate governance factors into a recursive agro-economic dynamic model to simulate governance impacts on land-use patterns at the global scale. Due to the difficulties of including governance indicators directly into numerical models, we use lending interest rates as discount rates to reflect risk-accounting factors associated with different governance scenarios. In addition to a reference scenario, three scenarios with high, low and mixed divergent discount rates are formed to represent weak, strong and fragmented governance. We find that weak governance leads to slower yield growth, increased cropland expansion and associated deforestation, mainly in Latin America, Sub-Saharan Africa, South Asia and Southeast Asia. This is associated with increasing food prices, particularly in Sub-Saharan Africa and Southeast Asia. By contrast, strong governance performance provides a stable political and economic situation which may bring down deforestation rates, stimulate investment in agricultural technologies, and induce fairly strong decreases in food prices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8009 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5002
Permanent link to this record