|   | 
Details
   web
Records
Author (up) Ginaldi, F.; Bindi, M.; Marta, A.D.; Ferrise, R.; Orlandini, S.; Danuso, F.
Title Interoperability of agronomic long term experiment databases and crop model intercomparison: the Italian experience Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.
Volume 77 Issue Pages 209-222
Keywords
Abstract • ICFAR-DB organises and stores data from 16 Italian long term agronomic experiments. • ICFAR-DB fulfils interoperability using system dynamics ontology and AgMIP nomenclature. • ICFAR information management system moves closer data to model and vice versa. The IC-FAR national project (Linking long term observatories with crop system modelling for better understanding of climate change impact, and adaptation strategies for Italian cropping systems) initiated in 2013 with the primary aim of implementing data from 16 long term Italian agronomic experiments in a common, interoperable structure. The building of a common database (DB) structure demands a harmonization process aimed at standardising concepts, language and data in order to make them clear, and has to produce a well-documented and easily available tool for the whole scientific community. The Agricultural Model Intercomparison and Improvement Project (AgMIP) has made a great effort in this sense, improving the vocabulary developed by the International Consortium for Agricultural Systems Applications (ICASA) and defining harmonization procedures. Nowadays, these ones have also to be addressed to facilitate the extraction of input files for crop model simulations. Substantially, two alternative directions can be pursued: adapting data to models, building a standard storage structure and using translators that convert DB information to model input files; or adapting models to data, using the same storage structure for feeding modelling solutions constituted by combining model components, re-implemented in the same model platform. The ICFAR information management system simplifies data entry, improves model input extraction (implementing System Dynamics ontology), and satisfies both the paradigms. This has required the development of different software tools: ICFAR-DB for data entry and storage; a model input extractor for feeding the crop models (MoLInEx); SEMoLa platform for building modelling solutions and performing via scripts the model intercomparison. The use of the standard AgMIP/ICASA nomenclature in the ICFAR-DB and the opportunity to create files with MoLInex for feeding AgMIP model translators allow full system interoperability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4972
Permanent link to this record
 

 
Author (up) Gobin, A.; Kersebaum, K.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takáč, J.; Kroes, J.; Ventrella, D.; Marta, A.; Deelstra, J.; Lalić, B.; Nejedlik, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Şaylan, L.; Stričevic, R.; Vučetić, V.; Zoumides, C.
Title Variability in the Water Footprint of Arable Crop Production across European Regions Type Journal Article
Year 2017 Publication Water Abbreviated Journal Water
Volume 9 Issue 2 Pages 93
Keywords
Abstract Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R² = 0.64–0.80; d = 0.91–0.95). The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield (c̅v̅ = 45%) and to a lesser extent to variability in crop water use (c̅v̅ = 21%). The WF variability between countries (c̅v̅ = 14%) is lower than the variability between seasons (c̅v̅ = 22%) and between crops (c̅v̅ = 46%). Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4988
Permanent link to this record
 

 
Author (up) Roggero, P.P.; Pulina, A.; Baldoni, G.; Basso, B.; Berti, A.; Orlandini, S.; Danuso, F.; Pasqui, M.; Toderi, M.; Mazzoncini, M.; Grignani, C.; Tei, F.; Ventrella, D.
Title IC-FAR: Linking Long Term Observatories with Crop Systems Modeling For a better understanding of Climate Change Impact, and Adaptation Strategies for Italian Cropping Systems Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The IC-FAR project (2013-2016), funded by the Italian ministry of University, Research and Education, aims to use datasets from 16 Italian long term agronomic experiments (LTEs) to assess the reliability of different cropping system models over a range of Mediterranean environments and cropping systems. The selected models will be used for scenario and uncertainty analyses vs near-future climate change. The LTEs are located in seven sites: Turin, Padua, Bologna, Ancona, Pisa, Perugia, Foggia. The project’s is linked to international projects such as MACSUR, AgMIP, ANAEE, ESFRI and GRA, and has model developer teams as associate partners. IC-FAR is structured in five WPs. WP1 is focused on building a common dataset and sampling protocols.  The field data will be implemented in the WP2 to calibrate, validate and assess the performances of different models across Italian environments. An uncertainty analysis will be performed in relation to the model types, cropping system typologies and climate scenarios (WP3). WP4 and WP5 are focused on capacity building on modeling and on dissemination, including networking with other European LTE platforms (WP4), and to the project coordination (WP5). The next step of IC-FAR will be the design and realization of a special issue summarizing a selection of the most important results from the LTEs, that will be the starting point towards the full implementation of the data sharing policy of this project.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5086
Permanent link to this record