toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ruane, A.C.; Hudson, N.I.; Asseng, S.; Camarrano, D.; Ewert, F.; Martre, P.; Boote, K.J.; Thorburn, P.J.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, &rew J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.F.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Kumar, S.N.; Müller, C.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Rötter, R.P.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Wolf, J. url  doi
openurl 
  Title Multi-wheat-model ensemble responses to interannual climate variability Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 81 Issue Pages 86-101  
  Keywords Crop modeling; Uncertainty; Multi-model ensemble; Wheat; AgMIP; Climate; impacts; Temperature; Precipitation; lnterannual variability; simulation-model; crop model; nitrogen dynamics; winter-wheat; large-area; systems simulation; farming systems; yield response; growth; water  
  Abstract We compare 27 wheat models’ yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models’ climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R-2 <= 0.24) was found between the models’ sensitivities to interannual temperature variability and their response to long-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 4769  
Permanent link to this record
 

 
Author Del Prado, A.; Crosson, P.; Olesen, J.E.; Rotz, C.A. doi  openurl
  Title Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems Type Journal Article
  Year 2013 Publication Animal Abbreviated Journal Animal  
  Volume 7 Suppl 2 Issue Pages 373-385  
  Keywords  
  Abstract The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7311 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial (down) 4765  
Permanent link to this record
 

 
Author Doltra, J.; Olesen, J.E.; Báez, D.; Louro, A.; Chirinda, N. url  doi
openurl 
  Title Modeling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 66 Issue Pages 8-20  
  Keywords greenhouse gas emissions; nitrogen losses; fasset process-based model; mitigation; crop management; n2o emissions; agricultural soils; cover crops; simulation; matter; wheat; uncertainty; variability; fertilizer; rotation  
  Abstract Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal-based cropping systems. Forage maize was grown in a conventional dairy system at Mabegondo (NW Spain) and wheat and barley in organic and conventional crop rotations at Foulum (NW Denmark). These two European sites represent agricultural areas with high and low to moderate emission levels, respectively. Field trials included plots with and without catch crops that were fertilized with either mineral N fertilizer, cattle slurry, pig slurry or digested manure. Non-fertilized treatments were also included. Measurements of N2O fluxes during the growing cycle of all the crops at both sites were performed with the static chamber method with more frequent measurements post-fertilization and biweekly measurements when high fluxes were not expected. All cropping systems were simulated with the FASSET version 2.5 simulation model. Cumulative soil seasonal N2O emissions were about ten-fold higher at Mabegondo than at Foulum when averaged across systems and treatments (8.99 and 0.71 kg N2O-N ha(-1), respectively). The average simulated cumulative soil N2O emissions were 9.03 and 1.71 kg N2O-N ha(-1) at Mabegondo and at Foulum, respectively. Fertilization, catch crops and cropping systems had lower influence on the seasonal soil N2O fluxes than the environmental factors. Overall, in its current version FASSET reproduced the effects of the different factors investigated on the cumulative seasonal soil N2O emissions but temporally it overestimated emissions from nitrification and denitrification on particular days when soil operations, ploughing or fertilization, took place. The errors associated with simulated daily soil N2O fluxes increased with the magnitude of the emissions. For resolving causes of differences in simulated and measured fluxes more intensive and temporally detailed measurements of N2O fluxes and soil C and N dynamics would be needed. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 4748  
Permanent link to this record
 

 
Author Makowski, D.; Asseng, S.; Ewert, F.; Bassu, S.; Durand, J.L.; Li, T.; Martre, P.; Adam, M.; Aggarwal, P.K.; Angulo, C.; Baron, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Boogaard, H.; Boote, K.J.; Bouman, B.; Bregaglio, S.; Brisson, N.; Buis, S.; Cammarano, D.; Challinor, A.J.; Confalonieri, R.; Conijn, J.G.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Doltra, J.; Fumoto, T.; Gaydon, D.; Gayler, S.; Goldberg, R.; Grant, R.F.; Grassini, P.; Hatfield, J.L.; Hasegawa, T.; Heng, L.; Hoek, S.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Jongschaap, R.E.E.; Jones, J.W.; Kemanian, R.A.; Kersebaum, K.C.; Kim, S.-H.; Lizaso, J.; Marcaida, M.; Müller, C.; Nakagawa, H.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.J.; Olesen, J.E.; Oriol, P.; Osborne, T.M.; Palosuo, T.; Pravia, M.V.; Priesack, E.; Ripoche, D.; Rosenzweig, C.; Ruane, A.C.; Ruget, F.; Sau, F.; Semenov, M.A.; Shcherbak, I.; Singh, B.; Singh, U.; Soo, H.K.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tang, L.; Tao, F.; Teixeira, E.I.; Thorburn, P.; Timlin, D.; Travasso, M.; Rötter, R.P.; Waha, K.; Wallach, D.; White, J.W.; Wilkens, P.; Williams, J.R.; Wolf, J.; Yin, X.; Yoshida, H.; Zhang, Z.; Zhu, Y. url  doi
openurl 
  Title A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 214-215 Issue Pages 483-493  
  Keywords climate change; crop model; emulator; meta-model; statistical model; yield; climate-change; wheat yields; metaanalysis; uncertainty; simulation; impacts  
  Abstract Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 4714  
Permanent link to this record
 

 
Author Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; Ferrise, R.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takáč, J.; Hlavinka, P.; Trnka, M.; Rötter, R.P. url  doi
openurl 
  Title Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization Type Journal Article
  Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 154 Issue 7 Pages 1218-1240  
  Keywords northern growing conditions; climate-change impacts; spring barley; systems simulation; farming systems; soil properties; winter-wheat; dynamics; growth; management  
  Abstract Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area index (LAI) and yield observations. The models were then tested against new data for 2009 and their performance was assessed and compared with both the two calibration years and the test year. For the calibration period, root mean square error between measurements and simulated grain dry matter yields ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi-model mean could not correct systematic errors in model simulations. Variation in soil N mineralization and LAI development due to differences in weather not captured by the models most likely was the main reason for their unsatisfactory performance. This suggests the need for model improvement in soil N mineralization as a function of soil temperature and moisture. Furthermore, specific weather event impacts such as low temperatures after emergence in 2009, tending to enhance tillering, and a high precipitation event just before harvest in 2008, causing possible yield penalties, were not captured by any of the models compared in the current study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 4713  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: