|   | 
Details
   web
Records
Author Olesen, J.E.; Vignjevic, M.; Wollenweber, B.
Title Modelling adaptation of wheat cultivar to increasing temperatures and heat stress Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Climate change is expected to lead to yield reductions in cereals due to effects on both growth duration and physiological processes affecting assimilation and translocation to grains. However, some of these negative effects may be alleviated through plant breeding. A pot experiment with selected spring wheat varieties exposed to post anthesis heat stress (35 oC for 5 days) showed that the major factor affecting variety differences in heat tolerance was related to effects on green leaf area duration after heat stress. A field experiment with the same selected spring wheat varieties showed large differences between the varieties in crop development and in biomass. The data were used to calibrate the FASSET and Sirius crop models using a sequenced calibration procedure. Both models simulated crop growth and yield well. A sensitivity analysis with increasing temperature showed declining yields for both models with higher rates of yield reduction at temperature increases above 3oC. The models agreed on the pattern of yield decline between cultivars, with larger yield declines being related to earliness. The FASSET model was further modified to simulate effects of cultivar differences in remobilization of water soluble carbohydrates and effects of post-anthesis heat stress on crop yield. Effects of variation in threshold temperature for heat stress as well as response rate are tested.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5105
Permanent link to this record
 

 
Author Olesen, J.E.; Jabloun, M.; Schelde, K.
Title Reconciling estimates of climate change effects on nitrate leaching from agricultural crops Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Nitrate leaching from agricultural systems constitutes a severe environmental effect in regions with valuable groundwater resources and vulnerable aquatic ecosystems. Therefore cropping systems should in many parts of Europe reduce the amount of nitrate leached from the root zone. Since soil nitrogen transformation and loss processes are highly influenced by climate, including temperature and precipitation, estimates of climate change effects on nitrate leaching is in high demand for evaluating future groundwater and surface water protection policies. Modelling studies using both the FASSET and Daisy models for cereal crops as well as arable crop rotations in Denmark have shown increased nitrate leaching under projected climate change. Sensitivity analyses using these models have shown a higher response to changes in temperature than to precipitation, although in particular precipitation responses differ between soil types. Simulations for crop rotations show that current catch crop management may not be sufficient to maintain low nitrate leaching levels in future. These effects of temperature and precipitation as well as crop management are confirmed in an empirical analysis of nitrate leaching from a long-term cropping system experiment in Denmark. The main uncertainties on climate change effects on future nitrate leaching appears to be related to effects of climate change on soil organic matter and thus on the amount of soil total N available for mineralization as well as the effects of enhanced atmospheric CO2 concentration on crop residue quality and N mineralization.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5118
Permanent link to this record
 

 
Author Sharif, B.; Olesen, J.E.; Schelde, K.
Title Statistical learning approach for modelling the effects of climate change on oilseed rape yield Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Statistical learning is a fairly new term referring to a set of supervised and unsupervised modelling and prediction techniques. It is based on traditional statistics but has been highly enhanced inspired by developments in machine learning and data mining. The main focus of statistical learning is to estimate the functions that quantify relations between several parameters and observed responses. These functions are further used for prediction, inference or a combination of both. For a particular case of quantitative responses, regularization techniques in regression are developed to overcome the weaknesses of ordinary least square (OLS) regression in prediction. These new shrinkage methods outperform OLS for prediction, especially in large datasets. In this study, a large dataset of field experiments on winter oilseed rape in Denmark for 22 years (1992 to 2013) was collected. Biweekly climatic data along with sowing date, harvest date, soil type and previous crop are considered as the explanatory variables. Yield of winter oilseed rape is considered as response variable. LASSO and Elastic Nets are the regularization techniques used to estimate the functions. Hold-one-out cross validation method for testing the prediction power reveals that these techniques are much useful in both prediction and inference. Since these techniques are included in recent versions of some software packages (e.g. R), they can be easily implemented by users at any level. The estimated function (model) is further used to predict the oilseed rape yield responses to climate change for several scenarios using representative weather data produced by a weather generator.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5129
Permanent link to this record
 

 
Author Webber, H.; White, J.W.; Kimball, B.A.; Ewert, F.; Asseng, S.; Rezaei, E.E.; Pinter, P.J., Jr.; Hatfield, J.L.; Reynolds, M.P.; Ababaei, B.; Bindi, M.; Doltra, J.; Ferrise, R.; Kage, H.; Kassie, B.T.; Kersebaum, K.-C.; Luig, A.; Olesen, J.E.; Semenov, M.A.; Stratonovitch, P.; Ratjen, A.M.; LaMorte, R.L.; Leavitt, S.W.; Hunsaker, D.J.; Wall, G.W.; Martre, P.
Title Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 216 Issue Pages 75-88
Keywords Heat stress; Crop model improvement; Heat and drought interactions; Climate change impact assessments; Canopy temperature; Wheat; Air CO2 Enrichment; Elevated Carbon-Dioxide; Water-Use Efficiency; Climate-Change; Wheat Evapotranspiration; Stomatal Conductance; Multimodel Ensembles; Farming Systems; Drought-Stress; Spring Wheat
Abstract Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.
Address 2018-02-19
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5189
Permanent link to this record
 

 
Author Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takac, J.; Ruget, F.; Ferrise, R.; Bezak, P.; Capellades, G.; Dibari, C.; Makinen, H.; Nendel, C.; Ventrella, D.; Rodriguez, A.; Bindi, M.; Trnka, M.
Title Decline in climate resilience of European wheat Type Journal Article
Year 2019 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 116 Issue 1 Pages 123-128
Keywords wheat; cultivar; Europe; climate resilience; response diversity; Diversity; Weather; Growth; Shifts; Crops; Yield; Variability
Abstract Food security relies on the resilience of staple food crops to climatic variability and extremes, but the climate resilience of European wheat is unknown. A diversity of responses to disturbance is considered a key determinant of resilience. The capacity of a sole crop genotype to perform well under climatic variability is limited; therefore, a set of cultivars with diverse responses to weather conditions critical to crop yield is required. Here, we show a decline in the response diversity of wheat in farmers’ fields in most European countries after 2002-2009 based on 101,000 cultivar yield observations. Similar responses to weather were identified in cultivar trials among central European countries and southern European countries. A response diversity hotspot appeared in the trials in Slovakia, while response diversity “deserts” were identified in Czechia and Germany and for durum wheat in southern Europe. Positive responses to abundant precipitation were lacking. This assessment suggests that current breeding programs and cultivar selection practices do not sufficiently prepare for climatic uncertainty and variability. Consequently, the demand for climate resilience of staple food crops such as wheat must be better articulated. Assessments and communication of response diversity enable collective learning across supply chains. Increased awareness could foster governance of resilience through research and breeding programs, incentives, and regulation.
Address 2019-01-17
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5226
Permanent link to this record