|   | 
Details
   web
Records
Author Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takac, J.; Ruget, F.; Ferrise, R.; Bezak, P.; Capellades, G.; Dibari, C.; Makinen, H.; Nendel, C.; Ventrella, D.; Rodriguez, A.; Bindi, M.; Trnka, M.
Title Decline in climate resilience of European wheat Type Journal Article
Year 2019 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 116 Issue 1 Pages 123-128
Keywords wheat; cultivar; Europe; climate resilience; response diversity; Diversity; Weather; Growth; Shifts; Crops; Yield; Variability
Abstract Food security relies on the resilience of staple food crops to climatic variability and extremes, but the climate resilience of European wheat is unknown. A diversity of responses to disturbance is considered a key determinant of resilience. The capacity of a sole crop genotype to perform well under climatic variability is limited; therefore, a set of cultivars with diverse responses to weather conditions critical to crop yield is required. Here, we show a decline in the response diversity of wheat in farmers’ fields in most European countries after 2002-2009 based on 101,000 cultivar yield observations. Similar responses to weather were identified in cultivar trials among central European countries and southern European countries. A response diversity hotspot appeared in the trials in Slovakia, while response diversity “deserts” were identified in Czechia and Germany and for durum wheat in southern Europe. Positive responses to abundant precipitation were lacking. This assessment suggests that current breeding programs and cultivar selection practices do not sufficiently prepare for climatic uncertainty and variability. Consequently, the demand for climate resilience of staple food crops such as wheat must be better articulated. Assessments and communication of response diversity enable collective learning across supply chains. Increased awareness could foster governance of resilience through research and breeding programs, incentives, and regulation.
Address 2019-01-17
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium Article
Area (up) Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5226
Permanent link to this record
 

 
Author Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Roetter, R.P.; Semeradova, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; Hlavinka, P.; Meitner, J.; Balek, J.; Havlik, P.; Buntgen, U.
Title Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas Type Journal Article
Year 2019 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 5 Issue 9 Pages eaau2406
Keywords climate-change impacts; sub-saharan africa; atmospheric co2; crop; yields; drought; agriculture; variability; irrigation; adaptation; carbon
Abstract Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near- simultaneous droughts across key world wheat-producing areas.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium Article
Area (up) Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5227
Permanent link to this record
 

 
Author Cammarano, D.; Rötter, P.; Ewert, F.; Palosuo, T.; Bindi, M.; Kersebaum, K.C.; Olesen, J.E.; Trnka, M.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Angulo, C.; Gaiser, T.; Nendel, C.; Martre, P.; de Wit, A.
Title Challenges for Agro-Ecosystem Modelling in Climate Change Risk Assessment for major European Crops and Farming systems Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages 555-564
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference Impacts World 2013, International Conference on Climate Change Effects, Potsdam, Germany, 2013-05-27 to 2013-05-30
Notes Approved no
Call Number MA @ admin @ Serial 2765
Permanent link to this record
 

 
Author Webber, H.; Martre, P.; Asseng, S.; Kimball, B.; White, J.; Ottman, M.; Wall, G.W.; De Sanctis, G.; Doltra, J.; Grant, R.; Kassie, B.; Maiorano, A.; Olesen, J.E.; Ripoche, D.; Rezaei, E.E.; Semenov, M.A.; Stratonovitch, P.; Ewert, F.
Title Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison Type Journal Article
Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 202 Issue Pages 21-35
Keywords Crop model comparison; Canopy temperature; Heat stress; Wheat
Abstract Even brief periods of high temperatures occurring around flowering and during grain filling can severely reduce grain yield in cereals. Recently, ecophysiological and crop models have begun to represent such phenomena. Most models use air temperature (Tair) in their heat stress responses despite evidence that crop canopy temperature (Tc) better explains grain yield losses. Tc can deviate significantly from Tair based on climatic factors and the crop water status. The broad objective of this study was to evaluate whether simulation of Tc improves the ability of crop models to simulate heat stress impacts on wheat under irrigated conditions. Nine process-based models, each using one of three broad approaches (empirical, EMP; energy balance assuming neutral atmospheric stability, EBN; and energy balance correcting for the atmospheric stability conditions, EBSC) to simulate Tc, simulated grain yield under a range of temperature conditions. The models varied widely in their ability to reproduce the measured Tc with the commonly used EBN models performing much worse than either EMP or EBSC. Use of Tc to account for heat stress effects did improve simulations compared to using only Tair to a relatively minor extent, but the models that additionally use Tc on various other processes as well did not have better yield simulations. Models that simulated yield well under heat stress had varying skill in simulating Tc. For example, the EBN models had very poor simulations of Tc but performed very well in simulating grain yield. These results highlight the need to more systematically understand and model heat stress events in wheat.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area (up) Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4824
Permanent link to this record
 

 
Author Olesen, J.E.
Title Socio-economic impacts – agricultural systems Type Book Chapter
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 397-407
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Quante, M.; Colijn, F.
Language Summary Language Original Title
Series Editor Series Title North Sea Region climate change assessment Abbreviated Series Title
Series Volume Regional Climate Studies Series Issue Edition
ISSN 1862-0248 (series) ISBN 978-3-319-39745-0 (eBook), 978-3-319-39745-0 (hardcover) Medium
Area (up) Expedition Conference
Notes Approved no
Call Number Serial 4828
Permanent link to this record