|   | 
Details
   web
Records
Author Trnka, M.; Hlavinka, P.; Wimmerová, M.; Pohanková, E.; Rötter, R.; Olesen, J.E.; Kersebaum, K.-C.; Semenov, M.
Title Paper on model responses to selected adverse weather conditions Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.2-D
Keywords
Abstract Based on the Trnka et al. (2015) study that indicated that heat and drought will be the most important stress factors for most of the European what area the further effort focused on these two extremes. The crop model HERMES has been tested for its ability to replicate correctly drought stress, heat stress and combination of both stresses. While data on the drought stress were available for both field and growth chambers, heat stress and its combination with heat stress was available only for the growth chambers. The modified version of the HERMES crop model was developed by Dr. Kersebaum and is being currently prepared for the journal paper publication.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4954
Permanent link to this record
 

 
Author Olesen, J.E.; Niemeyer, S.; Ceglar, A.; Roggero, P.-P.; Lehtonen, H.; Schönhart, M.; Kipling, R.
Title Section 5.3. Agriculture Type Book Chapter
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 223-243
Keywords
Abstract
Address (up)
Corporate Author Thesis
Publisher European Environmental Agency Place of Publication Copenhagen, Denmark Editor
Language Summary Language Original Title
Series Editor Series Title Climate change, impacts and vulnerability in Europe 2016. An indicator-based report Abbreviated Series Title
Series Volume EEA Report (1/2017) Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM, LiveM, TradeM Approved no
Call Number MA @ admin @ Serial 4964
Permanent link to this record
 

 
Author Sharif, B.; Makowski, D.; Plauborg, F.; Olesen, J.E.
Title Comparison of regression techniques to predict response of oilseed rape yield to variation in climatic conditions in Denmark Type Journal Article
Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.
Volume 82 Issue Pages 11-20
Keywords Winter oilseed rape; Statistical models; Yield; Climate; Regression
Abstract Highlights • Regularization techniques for regression outperformed the classical regression techniques in predicting crop yields. • Different regression techniques with similar prediction accuracy showed different responses of major climatic variables to crop yield. • The regression models showed some responses of crop yield to climatic conditions that is mostly absent in process based crop models. Abstract Statistical regression models represent alternatives to process-based dynamic models for predicting the response of crop yields to variation in climatic conditions. Regression models can be used to quantify the effect of change in temperature and precipitation on yields. However, it is difficult to identify the most relevant input variables that should be included in regression models due to the high number of candidate variables and to their correlations. This paper compares several regression techniques for modeling response of winter oilseed rape yield to a high number of correlated input variables. Several statistical regression methods were fitted to a dataset including 689 observations of winter oilseed rape yield from replicated field experiments conducted in 239 sites in Denmark, covering nearly all regions of the country from 1992 to 2013. Regression methods were compared by cross-validation. The regression methods leading to the most accurate yield predictions were Lasso and Elastic Net, and the least accurate methods were ordinary least squares and stepwise regression. Partial least squares and ridge regression methods gave intermediate results. The estimated relative yield change for a +1°C temperature increase during flowering was estimated to range between 0 and +6 %, depending on choice of regression method. Precipitation was found to have an adverse effect on yield during autumn and winter. It was estimated that an increase in precipitation of +1 mm/day would result in a relative yield change ranging from 0 to −4 %. Soil type was also important for crop yields with lower yields on sandy soils compared to loamy soils. Later sowing was found to result in increased crop yield. The estimated effect of climate on yield was highly sensitive to the chosen regression method. Regression models showing similar performance led in some cases to different conclusions with respect to effect of temperature and precipitation. Hence, it is recommended to apply an ensemble of regression models, in order to account for the sensitivity of the data driven models for projecting crop yield under climate change.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4966
Permanent link to this record
 

 
Author Raymundo, R.; Asseng, S.; Prassad, R.; Kleinwechter, U.; Concha, J.; Condori, B.; Bowen, W.; Wolf, J.; Olesen, J.E.; Dong, Q.; Zotarelli, L.; Gastelo, M.; Alva, A.; Travasso, M.; Quiroz, R.; Arora, V.; Graham, W.; Porter, C.
Title Performance of the SUBSTOR-potato model across contrasting growing conditions Type Journal Article
Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 202 Issue Pages 57-76
Keywords
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4967
Permanent link to this record
 

 
Author Fleisher, D.H.; Condori, B.; Quiroz, R.; Alva, A.; Asseng, S.; Barreda, C.; Bindi, M.; Boote, K.J.; Ferrise, R.; Franke, A.C.; Govindakrishnan, P.M.; Harahagazwe, D.; Hoogenboom, G.; Naresh Kumar, S.; Merante, P.; Nendel, C.; Olesen, J.E.; Parker, P.S.; Raes, D.; Raymundo, R.; Ruane, A.C.; Stockle, C.; Supit, I.; Vanuytrecht, E.; Wolf, J.; Woli, P.
Title A potato model intercomparison across varying climates and productivity levels Type Journal Article
Year 2017 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 23 Issue 3 Pages 1258-1281
Keywords
Abstract A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4968
Permanent link to this record