|   | 
Details
   web
Records
Author Yin, X.; Olesen, J.E.; Wang, M.; Öztürk, I.; Zhang, H.; Chen, F.
Title Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 78 Issue Pages 60-72
Keywords Climate change; Vulnerability; Impact; Adaptation; Cropping systems; The Northeast Farming Region of China; maize production; high-temperature; growth period; yield; rice; drought; management; nitrogen; crops; pests
Abstract The Northeast Farming Region of China (NFR) is a very important crop growing area, comprising seven sub-regions: Xing’anling (XA), Sanjiang (SJ), Northwest Songliao (NSL), Central Songliao (CSL), Southwest Songliao (SSL), Changbaishan (CB) and Liaodong (LD), which has been severely affected by extreme climate events and climatic change. Therefore, a set of expert survey has been done to identify current and project future climate limitations to crop production and explore appropriate adaptation measures in NFR. Droughts have been the largest limitation for maize (Zea mays L.) in NSL and SSL, and for soybean (Glycine max L Merr.) in SSL. Chilling damage has been the largest limitation for rice (Oryza sativa L) production in XA, SJ and CB. Projected climate change is expected to be beneficial for expanding the crop growing season, and to provide more suitable conditions for sowing and harvest. Autumn frost will occur later in most parts of NFR, and chilling damage will also decrease, particularly for rice production in XA and SJ. Drought and heat stress are expected to become more severe for maize and soybean production in most parts of NFR. Also, plant diseases, pests and weeds are considered to become more severe for crop production under climate change. Adaptation measures that have already been implemented in recent decades to cope with current climatic limitations include changes in timing of cultivation, variety choice, soil tillage practices, crop protection, irrigation and use of plastic film for soil cover. With the projected climate change and increasing risk of climatic extremes, additional adaptation measures will become relevant for sustaining and improving productivity of crops in NFR to ensure food security in China. (C) 2016 Elsevier B.V. All rights reserved.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4772
Permanent link to this record
 

 
Author Del Prado, A.; Crosson, P.; Olesen, J.E.; Rotz, C.A.
Title Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems Type Journal Article
Year 2013 Publication Animal Abbreviated Journal Animal
Volume 7 Suppl 2 Issue Pages 373-385
Keywords
Abstract The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7311 ISBN Medium Article
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4765
Permanent link to this record
 

 
Author Kersebaum, C.; Bindi, M.; Olesen, J.E.A.T., M.
Title WP 1/WP2 Data sharing and handling policy Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference JPI FACCE MACSUR CropM and LiveM cross-cutting activity Helsinki, Finland, 2013-05-06 to 2013-05-06
Notes Approved no
Call Number MA @ admin @ Serial 2523
Permanent link to this record
 

 
Author Kersebaum, C.; Kollas, C.; Bindi, M.; Nendel, C.; Ferrise, R.; Moriondo, M.; Olesen, J.E.; Sharif, B.; Öztürk, I.; Hoffmann, H.; Launay, M.; Ripoche, D.; Ruget, F.; Bertuzzi, P.; Cortazar, I.G.D.; Beaudoin, N.; Armas-Herrera, C.; Mary, B.; Müller, C.; Waha, K.; Ventrella, D.; Palosuo, T.; Rötter, R.; Trnka, M.; Hlavinka, P.; Wu, L.; Wegehenkel, M.; Mirschel, W.; Conradt, T.; Wechsung, F.; Weigel, H.-J.; Manderscheid, R.; Eitzinger, J.
Title Modelling complex crop rotations and management across sites in Europe with an ensemble of models Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ASA-CSSA-SSSA Int. Annual Meeting, Long Beach, CA, 2-5 November 2014, 2014-11-02 to 2014-11-05
Notes Approved no
Call Number MA @ admin @ Serial 2526
Permanent link to this record
 

 
Author Doltra, J.; Olesen, J.E.; Báez, D.; Louro, A.; Chirinda, N.
Title Modeling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 66 Issue Pages 8-20
Keywords greenhouse gas emissions; nitrogen losses; fasset process-based model; mitigation; crop management; n2o emissions; agricultural soils; cover crops; simulation; matter; wheat; uncertainty; variability; fertilizer; rotation
Abstract Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal-based cropping systems. Forage maize was grown in a conventional dairy system at Mabegondo (NW Spain) and wheat and barley in organic and conventional crop rotations at Foulum (NW Denmark). These two European sites represent agricultural areas with high and low to moderate emission levels, respectively. Field trials included plots with and without catch crops that were fertilized with either mineral N fertilizer, cattle slurry, pig slurry or digested manure. Non-fertilized treatments were also included. Measurements of N2O fluxes during the growing cycle of all the crops at both sites were performed with the static chamber method with more frequent measurements post-fertilization and biweekly measurements when high fluxes were not expected. All cropping systems were simulated with the FASSET version 2.5 simulation model. Cumulative soil seasonal N2O emissions were about ten-fold higher at Mabegondo than at Foulum when averaged across systems and treatments (8.99 and 0.71 kg N2O-N ha(-1), respectively). The average simulated cumulative soil N2O emissions were 9.03 and 1.71 kg N2O-N ha(-1) at Mabegondo and at Foulum, respectively. Fertilization, catch crops and cropping systems had lower influence on the seasonal soil N2O fluxes than the environmental factors. Overall, in its current version FASSET reproduced the effects of the different factors investigated on the cumulative seasonal soil N2O emissions but temporally it overestimated emissions from nitrification and denitrification on particular days when soil operations, ploughing or fertilization, took place. The errors associated with simulated daily soil N2O fluxes increased with the magnitude of the emissions. For resolving causes of differences in simulated and measured fluxes more intensive and temporally detailed measurements of N2O fluxes and soil C and N dynamics would be needed. (C) 2015 Elsevier B.V. All rights reserved.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4748
Permanent link to this record