|   | 
Details
   web
Records
Author König, H.J.; Helming, K.; Seddaiu, G.; Kipling, R.; Köchy, M.; Graversgaard, M.; van den Pol-van Dasselaar, A.; Nguyen, T.P.L.; Quaranta, G.; Salvia, R.; Sieber, S.; Ithes, S.; Kjeldsen, C.; Turner, K.G.; Dalgaard, T.; Roggero, P.P.
Title Stakeholder participation in agricultural research: Who should be involved, why, and how? Type Manuscript
Year Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Research in sustainable agricultural management requires appropriate participatory processes and tools enabling efficient dialogue and cooperation to allow researchers and stakeholders to co-produce knowledge. Research approaches that encourage stakeholder participation are in high demand because they allow a better understanding of human-nature interactions and interdependencies between actors. Participatory approaches also support multiple goals of agricultural management: improved productivity, food security, climate change adaptation, environmental conservation, rural development and policy decision making. Approaches to stakeholder engagement in the field of agricultural management research are manifold. Therefore, selecting the “right” approach depends on the specific purpose and contextualized issues at stake. We analyzed ten stakeholder approaches and propose a new framework with which to identify and select appropriate approaches for stakeholder engagement. The framework consists of three components: whom to engage (i.e., stakeholder type and mandate), why to engage (i.e., research purpose: consult, inform, collaborate), and how to engage (i.e., different methodological approaches). We identified different stakeholder groups (who?): farmers, agricultural actors, land users, and policymakers; different purposes (why?): facilitate engagement process, inform stakeholders, and obtain stakeholder perceptions; and different types of engagement methods (how?): participatory field experiments, desk simulations, interviews, panel discussions and different types of workshops. The framework was applied to arrange these approaches, organize them to improve understanding of their main strengths, weaknesses and supports for identifying and selecting an appropriate approach. We conclude that understanding the different facets of available approaches is crucial for selecting an appropriate stakeholder engagement approach. ;
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2564
Permanent link to this record
 

 
Author Nguyen, T.P.L.; Seddaiu, G.; Virdis, S.G.P.; Tidore, C.; Pasqui, M.; Roggero, P.P.
Title Perceiving to learn or learning to perceive? Understanding farmers’ perceptions and adaptation to climate uncertainties Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 143 Issue Pages 205-216
Keywords climate variability; socio-cognitive learning process; adaptation strategies; mediterranean agricultural systems; agricultural land-use; adaptive capacity; farming systems; variability; knowledge; risk; drought; africa; future; rain
Abstract Perception not only shapes knowledge but knowledge also shapes perception. Humans adapt to the natural world through a process of learning in which they interpret their sensory impressions in order to give meaning to their environment and act accordingly. In this research, we examined how farmers’ decision making is shaped in the context of changing climate. Using empirical data (face-to-face semi-structured interviews and questionnaires) on four Mediterranean farming systems from a case study located in Oristano (Sardinia, Italy) we sought to understand farmers’ perception of climate change and their behaviors in adjustment of farming practices. We found different perceptions among farmer groups were mainly associated with the different socio-cultural and institutional settings and perceived relationships between climate factors and impacts on each farming systems. The research findings on different perceptions among farmer groups can help to understand farmers’ current choices and attitudes of adaptation for supporting the development of appropriate adaptation strategies. In addition, the knowledge of socio-cultural and economic factors that lead to biases in climate perceptions can help to integrate climate communication into adaptation research for making sense of climate impacts and responses at farm level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4707
Permanent link to this record
 

 
Author Allan, C.; Nguyen, T.P.L.; Seddaiu, G.; Wilson, B.; Roggero, P.P.
Title Integrating local knowledge with experimental research: case studies on managing cropping systems in Italy and Australia Type Journal Article
Year 2013 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.
Volume 8 Issue 2 Pages 15
Keywords participatory action research; agronomic research; local knowledge; knowledge integration
Abstract The sustainable development of agricultural systems is currently challenged by many complex agro-environmental issues. These are characterized by an incomplete understanding of the situation and the problems that arise, and the conflicting opinions that result, issues over boundaries that are often difficult to define, and controversy over the multiple goals and uncertain outcomes. Added to these characteristics, we also have the slow and often inadequate uptake and implementation of research outcomes in this complex, real world. In order to improve sustainability of agro-ecosystems, agronomic research must move away from the linear research approaches and extension practices adopted so far that have focused purely on biophysical agro-ecosystems. The theoretical operational space of agronomic research must be transformed by considering agronomic issues as part of a broader social-agro-ecosystem. One aspect of this transformation is the inclusion of knowledge collected on a local level with the participation of farmers on the ground. The integration of local experiential knowledge with traditional agronomic research is by necessity based on the participation of many different stakeholders and there can be no single blueprint for how best to develop and use the input received. However, agronomists and policy advisors require general guidelines drawn up from actual experience in order to accelerate positive agronomic change. We address this need through a comparative analysis of two case studies; one involves multi-stakeholder research in a cropping system in the dairy district of Arborea, Sardinia, Italy. The central question was: How can high crop production be maintained while also achieving the EU target water quality and minimizing the production costs? The second case is a multi-stakeholder soil health project from south-eastern Australia. Here the central question was: How can soil decline be prevented and reversed in this district, and soils made more resilient to future challenges? The Social Learning for the Integrated Management and sustainable use of water (SLIM) framework, a useful heuristic tool for exploring the dynamics of transformational change, guided the analysis of the case studies. Within this framework, a key indicator of success is the emergence of new knowledge from the creation of new spaces for learning between researchers and local stakeholders. The Italian case study appears to have been the most successful in this sense, as opportunities for joint exploration of research data allowed new potential farming responses to the central question to emerge. The multi-stakeholder processes in the Australian case focused more on providing public openings for individual learning, and missed the opportunity for new knowledge to emerge through joint exploration. We conclude that participatory approaches may enable transformative practice through knowledge integration, but that this process is not an automatic outcome of increased community participation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2039-6805 1125-4718 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4482
Permanent link to this record
 

 
Author Nguyen, T.P.L.; Seddaiu, G.; Tidore, C.; Roggero, P.P.
Title Adaptation to climate change of Italian agricultural systems: the analysis of explorative scenarios Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Adaptation of agricultural systems to climate uncertainties requires the construction of scenarios that should take into account the complexities of socio-ecological systems of a specific local context. Adaptation scenarios of agricultural systems are not making forecasts or predictions, but prospective futures or future paths. They can facilitate our understanding of how systems work and evolve. Adaptation processes of agricultural systems involve a variety of changes in local practices and social organization. The development of adaptation scenarios at farm level entails a clear understanding of farmers’ frames that are mediated by their interests, experiences and internal and external forces. Farmers’ frames is the way in which farmers frame climate issues emphasizing vulnerabilities, uncertainties and opportunities (i.e: impacts on their farming systems) and open the window for searching adaptation strategies. This study reports on the methodologies for the development of explorative scenarios (i.e., scenarios that explore the future from a variety of perspectives) for the climate change adaptation of four agricultural systems (intensive dairy cattle, extensive dairy sheep, rice farming and horticulture) in the Oristano regional pilot study in Italy. Explorative scenarios were used to explore trends into the future from the past and present. Three research steps were followed: (i) in the first step farmers’ perceptions and prospective through semi-structured interviews and questionnaires were analysed; (ii) in the second step the evolution of the agricultural systems (i.e. temporal and spatial) was evaluated; (iii) the third step examined multiple stakeholders’ outlooks about farm-level possible adaptive strategies through interactive workshops.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5050
Permanent link to this record
 

 
Author Roggero, P.P.; Seddaiu, G.; Ledda, L.; Doro, L.; Deligios, P.; Nguyen, T.P.L.; Pasqui, M.; Quaresima, S.; Lacetera, N.; Cortignani, R.; Dono, G.
Title Combining modeling and stakeholder involvement to build community adaptive responses to climate change in a Mediterranean agricultural district Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The case study area (54,000 ha) is located at Oristano, Italy. The main cropping systems are based on forages (silage maize, Italian ryegrass and alfalfa under irrigation, winter cereals and grasslands under rainfed conditions), rainfed cereals (durum wheat, barley), vegetables (e.g. artichokes), rice, citrus, olives and vineyards. Some 36,000 ha are served by irrigation. The area includes the dairy cows cooperative system of Arborea (30,000 cows, 5500 ha, nitrate vulnerable zone). The rainfed dairy sheep includes 372,000 sheep and a number of small milk processing plants. The research aims to support adaptive responses to climate change through the combination of modeling approaches and stakeholder engagement. Present (2000-2010) and future (2020-2030) climatic scenarios were developed by combining global climate models with Regional Atmospheric Modelling Systems to produce calibrated time series of daily temperature and precipitation for the case study. The EPIC model was calibrated to simulate the impact of climate scenarios on the main cropping systems. The impact of THIndex on milk yield, milk quality and mortality was also simulated for dairy cows. A territorial farm-type Discrete Stochastic Programming model was implemented to simulate choices for thirteen farming typologies as influenced by crop yields and water consumptions. Participatory activities, including field experiments, interviews, focus groups and interactive workshops, involved farmers and other stakeholders in the most critical phases of the research. The assessment of uncertainties and opportunities were proposed as a basis for discussion with policy makers to identify priorities for agro-climatic measures in 2014-2020.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5065
Permanent link to this record