|   | 
Details
   web
Records
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczaki, J.; Lorite, I.J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Ozturk, I.; Perego, A.; Rodriguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rotter, R.P.
Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Journal Article
Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 209-224
Keywords Classification; Climate change; Crop model; Ensemble; Sensitivity analysis; Wheat; Climate-Change; Crop Models; Probabilistic Assessment; Simulating; Impacts; British Catchments; Uncertainty; Europe; Productivity; Calibration; Adaptation
Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9 degrees C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Address 2018-01-25
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0308-521x ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5186
Permanent link to this record
 

 
Author Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takác, J.; Trnka, M.
Title Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models Type Journal Article
Year 2012 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 133 Issue Pages 23-36
Keywords climate; crop growth simulation; model comparison; spring barley; yield variability; uncertainty; change impacts; nitrogen dynamics; high-temperature; soil-moisture; elevated co2; ceres-wheat; data set; growth; drought; sensitivity
Abstract In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4803
Permanent link to this record
 

 
Author Cammarano, D.; Rötter, R.P.; Asseng, S.; Ewert, F.; Wallach, D.; Martre, P.; Hatfield, J.L.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Kersebaum, K.C.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Heng, L.; Hooker, J.E.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Priesack, E.; Ripoche, D.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; White, J.W.; Wolf, J.
Title Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2 Type Journal Article
Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 198 Issue Pages 80-92
Keywords Multi-model simulation; Transpiration efficiency; Water use; Uncertainty; Sensitivity
Abstract Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50% of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4786
Permanent link to this record
 

 
Author Nendel, C.; Wieland, R.; Mirschel, W.; Specka, X.; Guddat, C.; Kersebaum, K.C.
Title Simulating regional winter wheat yields using input data of different spatial resolution Type Journal Article
Year 2013 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 145 Issue Pages 67-77
Keywords monica; agro-ecosystem model; dynamic modelling; scaling; input data; climate-change; crop yield; nitrogen dynamics; food security; mineral nitrogen; soil-moisture; scaling-up; model; maize; water
Abstract The success of using agro-ecosystem models for the high-resolution simulation of agricultural yields for larger areas is often hampered by a lack of input data. We investigated the effect of different spatially resolved soil and weather data used as input for the MONICA model on its ability to reproduce winter wheat yields in the Federal State of Thuringia, Germany (16,172 km(2)). The combination of one representative soil and one weather station was insufficient to reproduce the observed mean yield of 6.66 +/- 0.87 t ha(-1) for the federal state. Use of a 100 m x 100 m grid of soil and relief information combined with just one representative weather station yielded a good estimator (7.01 +/- 1.47 t ha(-1)). The soil and relief data grid used in combination with weather information from 14 weather stations in a nearest neighbour approach produced even better results (6.60 +/- 1.37 t ha(-1)); the same grid used with 39 additional rain gauges and an interpolation algorithm that included an altitude correction of temperature data slightly overpredicted the observed mean (7.36 +/- 1.17 t ha(-1)). It was concluded that the apparent success of the first two high-resolution approaches over the latter was based on two effects that cancelled each other out: the calibration of MONICA to match high-yield experimental data and the growth-defining and -limiting effect of weather data that is not representative for large parts of the region. At the county and farm level the MONICA model failed to reproduce the 1992-2010 time series of yields, which is partly explained by the fact that many growth-reducing factors were not considered in the model. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4498
Permanent link to this record
 

 
Author Mäkinen, H.; Kaseva, J.; Trnka, M.; Balek, J.; Kersebaum, K.C.; Nendel, C.; Gobin, A.; Olesen, J.E.; Bindi, M.; Ferrise, R.; Moriondo, M.; Rodriguez, A.; Ruiz-Ramos, M.; Takáč, J.; Bezák, P.; Ventrella, D.; Ruget, F.; Capellades, G.; Kahiluoto, H.
Title Sensitivity of European wheat to extreme weather Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 222 Issue Pages 209-217
Keywords European wheat; Cultivar; Weather; Extreme; Climate change; Yield response; High-Temperature; Heat-Stress; Use Efficiency; Growth-Stages; Winter-Wheat; Yield; Crop; Barley; Tolerance
Abstract The frequency and intensity of extreme weather is increasing concomitant with changes in the global climate change. Although wheat is the most important food crop in Europe, there is currently no comprehensive empirical information available regarding the sensitivity of European wheat to extreme weather. In this study, we assessed the sensitivity of European wheat yields to extreme weather related to phenology (sowing, heading) in cultivar trials across Europe (latitudes 37.21 degrees to 61.34 degrees and longitudes- 6.02 degrees to 26.24 degrees) during the period 1991-2014. All the observed agro-climatic extremes (>= 31 degrees C, >= 35 degrees C, or drought around heading; >= 35 degrees C from heading to maturity; excessive rainfall; heavy rainfall and low global radiation) led to marked yield penalties in a selected set of European cultivars, whereas few cultivars were found to with no yield penalty in such conditions. There were no European wheat cultivars that responded positively (+ 10%) to drought after sowing, or frost during winter (- 15 degrees C and – 20 degrees C). Positive responses to extremes were often shown by cultivars associated with specific regions, such as good performance under high temperatures by southern-origin cultivars. Consequently, a major future breeding challenge will be to evaluate the potential of combining such cultivar properties with other properties required under different growing conditions with, for example, long day conditions at higher latitudes, when the intensity and frequency of extremes rapidly increase.
Address 2018-06-05
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0378-4290 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5200
Permanent link to this record