|   | 
Details
   web
Records
Author (up) Leolini, L.; Moriondo, M.; De Cortazar-Atauri, I.; Ruiz-Ramos, M.; Nendel, C.; Roggero, P.P.; Spanna, F.; Ramos, M.C.; Costafreda-Aumedes, S.; Ferrise, R.; Bindi, M.
Title Modelling different cropping systems Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.4-D
Keywords
Abstract Grapevine is a worldwide valuable crop characterized by a high economic importance for the production of high quality wines. However, the impact of climate change on the narrow climate niches in which grapevine is currently cultivated constitute a great risk for future suitability of grapevine. In this context, grape simulation models are considered promising tools for their contribution to investigate plant behavior in different environments. In this study, six models developed for simulating grapevine growth and development were tested by focusing on their performances in simulating main grapevine processes under two calibration levels: minimum and full calibration. This would help to evaluate major limitations/strength points of these models, especially in the view of their application to climate change impact and adaptation assessments. Preliminary results from two models (GrapeModel and STICS) showed contrasting abilities in reproducing the observed data depending on the site, the year and the target variable considered. These results suggest that a limited dataset for model calibration would lead to poor simulation outputs. However, a more complete interpretation and detailed analysis of the results will be provided when considering the other models simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 5033
Permanent link to this record
 

 
Author (up) Liu, B.; Asseng, S.; Müller, C.; Ewert, F.; Elliott, J.; Lobell, D. B.; Martre, P.; Ruane, A. C.; Wallach, D.; Jones, J. W.; Rosenzweig, C.; Aggarwal, P. K.; Alderman, P. D.; Anothai, J.; Basso, B.; Biernath, C.; Cammarano, D.; Challinor, A.; Deryng, D.; Sanctis, G. D.; Doltra, J.; Fereres, E.; Folberth, C.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; Jones, C. D.; Kersebaum, K. C.; Kimball, B. A.; Koehler, A.-K.; Kumar, S. N.; Nendel, C.; O’Leary, G. J.; Olesen, J. E.; Ottman, M. J.; Palosuo, T.; Prasad, P. V. V.; Priesack, E.; Pugh, T. A. M.; Reynolds, M.; Rezaei, E. E.; Rötter, R. P.; Schmid, E.; Semenov, M. A.; Shcherbak, I.; Stehfest, E.; Stöckle, C. O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.; Waha, K.; Wall, G. W.; Wang, E.; White, J. W.; Wolf, J.; Zhao, Z.; Zhu, Y.
Title Similar estimates of temperature impacts on global wheat yield by three independent methods Type Journal Article
Year 2016 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 6 Issue 12 Pages 1130-1136
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4965
Permanent link to this record
 

 
Author (up) Liu, B.; Martre, P.; Ewert, F.; Porter, J.R.; Challinor, A.J.; Mueller, C.; Ruane, A.C.; Waha, K.; Thorburn, P.J.; Aggarwal, P.K.; Ahmed, M.; Balkovic, J.; Basso, B.; Biernath, C.; Bindi, M.; Cammarano, D.; De Sanctis, G.; Dumont, B.; Espadafor, M.; Rezaei, E.E.; Ferrise, R.; Garcia-Vila, M.; Gayler, S.; Gao, Y.; Horan, H.; Hoogenboom, G.; Izaurralde, R.C.; Jones, C.D.; Kassie, B.T.; Kersebaum, K.C.; Klein, C.; Koehler, A.-K.; Maiorano, A.; Minoli, S.; San Martin, M.M.; Kumar, S.N.; Nendel, C.; O’Leary, G.J.; Palosuo, T.; Priesack, E.; Ripoche, D.; Roetter, R.P.; Semenov, M.A.; Stockle, C.; Streck, T.; Supit, I.; Tao, F.; Van der Velde, M.; Wallach, D.; Wang, E.; Webber, H.; Wolf, J.; Xiao, L.; Zhang, Z.; Zhao, Z.; Zhu, Y.; Asseng, S.
Title Global wheat production with 1.5 and 2.0 degrees C above pre-industrial warming Type Journal Article
Year 2019 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 25 Issue 4 Pages 1428-1444
Keywords 1.5 degrees C warming; climate change; extreme low yields; food security; model ensemble; wheat production; Climate-Change; Crop Yield; Impacts; Co2; Adaptation; Responses; Models; Agriculture; Simulation; Growth
Abstract Efforts to limit global warming to below 2 degrees C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2 degrees C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0 degrees C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5 degrees C scenario and -2.4% to 10.5% under the 2.0 degrees C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2 degrees C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.
Address 2019-04-27
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5219
Permanent link to this record
 

 
Author (up) Mäkinen, H.; Kaseva, J.; Trnka, M.; Balek, J.; Kersebaum, K.C.; Nendel, C.; Gobin, A.; Olesen, J.E.; Bindi, M.; Ferrise, R.; Moriondo, M.; Rodriguez, A.; Ruiz-Ramos, M.; Takáč, J.; Bezák, P.; Ventrella, D.; Ruget, F.; Capellades, G.; Kahiluoto, H.
Title Sensitivity of European wheat to extreme weather Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 222 Issue Pages 209-217
Keywords European wheat; Cultivar; Weather; Extreme; Climate change; Yield response; High-Temperature; Heat-Stress; Use Efficiency; Growth-Stages; Winter-Wheat; Yield; Crop; Barley; Tolerance
Abstract The frequency and intensity of extreme weather is increasing concomitant with changes in the global climate change. Although wheat is the most important food crop in Europe, there is currently no comprehensive empirical information available regarding the sensitivity of European wheat to extreme weather. In this study, we assessed the sensitivity of European wheat yields to extreme weather related to phenology (sowing, heading) in cultivar trials across Europe (latitudes 37.21 degrees to 61.34 degrees and longitudes- 6.02 degrees to 26.24 degrees) during the period 1991-2014. All the observed agro-climatic extremes (>= 31 degrees C, >= 35 degrees C, or drought around heading; >= 35 degrees C from heading to maturity; excessive rainfall; heavy rainfall and low global radiation) led to marked yield penalties in a selected set of European cultivars, whereas few cultivars were found to with no yield penalty in such conditions. There were no European wheat cultivars that responded positively (+ 10%) to drought after sowing, or frost during winter (- 15 degrees C and – 20 degrees C). Positive responses to extremes were often shown by cultivars associated with specific regions, such as good performance under high temperatures by southern-origin cultivars. Consequently, a major future breeding challenge will be to evaluate the potential of combining such cultivar properties with other properties required under different growing conditions with, for example, long day conditions at higher latitudes, when the intensity and frequency of extremes rapidly increase.
Address 2018-06-05
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5200
Permanent link to this record
 

 
Author (up) Makowski, D.; Asseng, S.; Ewert, F.; Bassu, S.; Durand, J.L.; Li, T.; Martre, P.; Adam, M.; Aggarwal, P.K.; Angulo, C.; Baron, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Boogaard, H.; Boote, K.J.; Bouman, B.; Bregaglio, S.; Brisson, N.; Buis, S.; Cammarano, D.; Challinor, A.J.; Confalonieri, R.; Conijn, J.G.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Doltra, J.; Fumoto, T.; Gaydon, D.; Gayler, S.; Goldberg, R.; Grant, R.F.; Grassini, P.; Hatfield, J.L.; Hasegawa, T.; Heng, L.; Hoek, S.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Jongschaap, R.E.E.; Jones, J.W.; Kemanian, R.A.; Kersebaum, K.C.; Kim, S.-H.; Lizaso, J.; Marcaida, M.; Müller, C.; Nakagawa, H.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.J.; Olesen, J.E.; Oriol, P.; Osborne, T.M.; Palosuo, T.; Pravia, M.V.; Priesack, E.; Ripoche, D.; Rosenzweig, C.; Ruane, A.C.; Ruget, F.; Sau, F.; Semenov, M.A.; Shcherbak, I.; Singh, B.; Singh, U.; Soo, H.K.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tang, L.; Tao, F.; Teixeira, E.I.; Thorburn, P.; Timlin, D.; Travasso, M.; Rötter, R.P.; Waha, K.; Wallach, D.; White, J.W.; Wilkens, P.; Williams, J.R.; Wolf, J.; Yin, X.; Yoshida, H.; Zhang, Z.; Zhu, Y.
Title A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 214-215 Issue Pages 483-493
Keywords climate change; crop model; emulator; meta-model; statistical model; yield; climate-change; wheat yields; metaanalysis; uncertainty; simulation; impacts
Abstract Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4714
Permanent link to this record