|   | 
Details
   web
Records
Author Leolini, L.; Moriondo, M.; De Cortazar-Atauri, I.; Ruiz-Ramos, M.; Nendel, C.; Roggero, P.P.; Spanna, F.; Ramos, M.C.; Costafreda-Aumedes, S.; Ferrise, R.; Bindi, M.
Title Modelling different cropping systems Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.4-D
Keywords
Abstract (up) Grapevine is a worldwide valuable crop characterized by a high economic importance for the production of high quality wines. However, the impact of climate change on the narrow climate niches in which grapevine is currently cultivated constitute a great risk for future suitability of grapevine. In this context, grape simulation models are considered promising tools for their contribution to investigate plant behavior in different environments. In this study, six models developed for simulating grapevine growth and development were tested by focusing on their performances in simulating main grapevine processes under two calibration levels: minimum and full calibration. This would help to evaluate major limitations/strength points of these models, especially in the view of their application to climate change impact and adaptation assessments. Preliminary results from two models (GrapeModel and STICS) showed contrasting abilities in reproducing the observed data depending on the site, the year and the target variable considered. These results suggest that a limited dataset for model calibration would lead to poor simulation outputs. However, a more complete interpretation and detailed analysis of the results will be provided when considering the other models simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 5033
Permanent link to this record
 

 
Author Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takác, J.; Trnka, M.
Title Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models Type Journal Article
Year 2012 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 133 Issue Pages 23-36
Keywords climate; crop growth simulation; model comparison; spring barley; yield variability; uncertainty; change impacts; nitrogen dynamics; high-temperature; soil-moisture; elevated co2; ceres-wheat; data set; growth; drought; sensitivity
Abstract (up) In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4803
Permanent link to this record
 

 
Author Grosz, B.; Dechow, R.; Gebbert, S.; Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Kuhnert, M.; Yeluripati, J.; Haas, E.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Tao, F.; Roetter, R.; Kassie, B.; Cammarano, D.; Asseng, S.; Weihermueller, L.; Siebert, S.; Gaiser, T.; Ewert, F.
Title The implication of input data aggregation on up-scaling soil organic carbon changes Type Journal Article
Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 96 Issue Pages 361-377
Keywords Biogeochemical model; Data aggregation; Up-scaling error; Soil organic carbon; DIFFERENT SPATIAL SCALES; NITROUS-OXIDE EMISSIONS; MODELING SYSTEM; DATA; RESOLUTION; CROP MODELS; CLIMATE; LONG; PRODUCTIVITY; CROPLANDS; DAYCENT
Abstract (up) In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low. (C)2017 Elsevier Ltd. All rights reserved.
Address 2017-09-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5176
Permanent link to this record
 

 
Author Yin, X.; Kersebaum, K.-C.; Beaudoin, N.; Constantin, J.; Chen, F.; Louarn, G.; Manevski, K.; Hoffmann, M.; Kollas, C.; Armas-Herrera, C.M.; Baby, S.; Bindi, M.; Dibari, C.; Ferchaud, F.; Ferrise, R.; de Cortazar-Atauri, I.G.; Launay, M.; Mary, B.; Moriondo, M.; Öztürk, I.; Ruget, F.; Sharif, B.; Wachter-Ripoche, D.; Olesen, J.E.
Title Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models Type Journal Article
Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume Issue Pages 107863
Keywords multi-model ensemble; crop rotations; catch crops; N cycling; N export
Abstract (up) Modelling N transformations within cropping systems is crucial for N management optimization in order to increase N use efficiency and reduce N losses. Such modelling remains challenging because of the complexity of N cycling in soil–plant systems. In the current study, the uncertainties of six widely used process-based models (PBMs), including APSIM, CROPSYST, DAISY, FASSET, HERMES and STICS, were tested in simulating different N managements (catch crops (CC) and different N fertilizer rates) in 12-year rotations in Western Europe. Winter wheat, sugar beet and pea were the main crops, and radish was the main CC in the tested systems. Our results showed that PBMs simulated yield, aboveground biomass, N export and N uptake well with low RMSE values, except for sugar beet, which was generally less well parameterized. Moreover, PBMs provided more accurate crop simulations (i.e. N export and N uptake) compared to simulations of soil (N mineralization and soil mineral N (SMN)) and environmental variables (N leaching). The use of multi-model ensemble mean or median of four PBMs significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15% for yield, aboveground biomass, N export and N uptake. Multi-model ensemble also significantly reduced the MAPE for net N mineralization and annual N leaching to around 15%, while it was larger than 20% for SMN. Generally, PBMs well simulated the CC effects on N fluxes, i.e. increasing N mineralization and reducing N leaching in both short-term and long-term, and all PBMs correctly predicted the effects of the reduced N rate on all measured variables in the study. The uncertainties of multi-model ensemble for N mineralization, SMN and N leaching were larger, mainly because these variables are influenced by plant-soil interactions and subject to cumulative long-term effects in crop rotations, which makes them more difficult to simulate. Large differences existed between individual PBMs due to the differences in formalisms for describing N processes in soil–plant systems, the skills of modelers and the model calibration level. In addition, the model performance also depended on the simulated variables, for instance, HERMES and FASSET performed better for yield and crop biomass, APSIM, DAISY and STICS performed better for N export and N uptake, STICS provided best simulation for SMN and N leaching among the six individual PBMs in the study, but all PBMs met difficulties to well predict either average or variance of soil N mineralization. Our results showed that better calibration for soil N variables is needed to improve model predictions of N cycling in order to optimize N management in crop rotations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium article
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5235
Permanent link to this record
 

 
Author Kersebaum, K.-C.; Wallor, E.; Ventrella, D.; Cammarano, D.; Choucheney, E.; Ewert, F.; Ferrise, R.; Gaiser, T.; Garofalo, P.; Giglio, L.; Giola, P.; Hoffmann, M.; Laan, M.; Lewan, E.; Maharjan, G.R.; Moriondo, M.; Mula, L.; Nendel, C.; Pohankova, E.; Roggero, P.P.; Trnka, M.; Trombi, G.
Title Comparison of site sensitivity of crop models using spatially variable field data from Precision Agriculture Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.1-D2
Keywords
Abstract (up) Site conditions and soil properties have a strong influence on impacts of climate change on crop production. Vulnerability of crop production to changing climate conditions is highly determined by the ability of the site to buffer periods of adverse climatic situations like water scarcity or excessive rainfall.  Therefore, the capability of models to reflect crop responses and water and nutrient dynamics under different site conditions is essential to assess climate impact even on a regional scale. To test and improve sensitivity of models to various site properties such as soil variability and hydrological boundary conditions, spatial variable data sets from precision farming of two fields in Germany and Italy were provided to modellers. For the German 20 ha field soil and management data for 60 grid points for 3 years (2 years wheat, 1 year triticale) were provided. For the Italian field (12 ha) information for 100 grid points were available for three growing seasons of durum wheat. Modellers were asked to run their models using a) the model specific procedure to estimate soil hydraulic properties from texture using their standard procedure and use in step b) fixed values for field capacity and wilting point derived from soil taxonomy. Only the phenology and crop yield of one grid point provided for a basic calibration. In step c) information for all grid points of the first year (yield, soil water and mineral N content for Germany, yield, biomass and LAI for Italy) were provided. First results of five out of twelve participating models are compared against measured state variables analysing their site specific response and consistency across crop and soil variables. (Main text to be published in a peer-reviewed journal)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Abstract
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4951
Permanent link to this record