toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bodirsky, B.L.; Müller, C. url  doi
openurl 
  Title Robust relationship between yields and nitrogen inputs indicates three ways to reduce nitrogen pollution Type Journal Article
  Year 2014 Publication (up) Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 11 Pages 111005  
  Keywords nitrogen use efficiency; nitrogen; fertilizer; nitrogen pollution; agriculture; yields; mitigation; framework  
  Abstract Historic increases in agricultural production came at the expense of substantial environmental burden through nitrogen pollution. Lassaletta et al (2014 Environ. Res. Lett. 9 105011) examine the historic relationship of crop yields and nitrogen fertilizer inputs globally and find a simple and robust relationship of declining nitrogen use efficiency with increasing nitrogen inputs. This general relationship helps to understand the dilemma between increased agricultural production and nitrogen pollution and allows identifying pathways towards more sustainable agricultural production and necessary associated policies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4514  
Permanent link to this record
 

 
Author Schauberger, B.; Rolinski, S.; Müller, C. doi  openurl
  Title A network-based approach for semi-quantitative knowledge mining and its application to yield variability Type Journal Article
  Year 2016 Publication (up) Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 11 Issue 12 Pages 123001  
  Keywords yield variability; crop models; interaction network; plant process; wheat; maize; rice; Global Food Security; Climate-Change; Crop Production; Stress Tolerance; Wheat Yields; Heat-Stress; Temperature Variability; Environmental-Factors; United-States; Elevated CO2  
  Abstract Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. Asystematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.  
  Address 2017-04-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4942  
Permanent link to this record
 

 
Author Humpenöder, F.; Popp, A.; Stevanovic, M.; Müller, C.; Bodirsky, B.L.; Bonsch, M.; Dietrich, J.P.; Lotze-Campen, H.; Weindl, I.; Biewald, A.; Rolinski, S. url  doi
openurl 
  Title Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation Type Journal Article
  Year 2015 Publication (up) Environmental Science and Technology Abbreviated Journal Environ Sci Technol  
  Volume 49 Issue 11 Pages 6731-6739  
  Keywords  
  Abstract Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4998  
Permanent link to this record
 

 
Author Stevanović, M.; Popp, A.; Bodirsky, B.L.; Humpenöder, F.; Müller, C.; Weindl, I.; Dietrich, J.P.; Lotze-Campen, H.; Kreidenweis, U.; Rolinski, S.; Biewald, A.; Wang, X. url  doi
openurl 
  Title Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices Type Journal Article
  Year 2017 Publication (up) Environmental Science and Technology Abbreviated Journal Environmental Science and Technology  
  Volume 51 Issue 1 Pages 365-374  
  Keywords  
  Abstract The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5007  
Permanent link to this record
 

 
Author Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L. url  doi
openurl 
  Title Crop rotation modelling—A European model intercomparison Type Journal Article
  Year 2015 Publication (up) European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 70 Issue Pages 98-111  
  Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth  
  Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4660  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: