|   | 
Details
   web
Records
Author Waha, K.; Müller, C.; Rolinski, S.
Title Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century Type Journal Article
Year 2013 Publication Global and Planetary Change Abbreviated Journal Global and Planetary Change
Volume 106 Issue Pages (down) 1-12
Keywords climate change; wet season; water stress; temperature stress; hierarchical cluster analysis; global vegetation model; climate-change; southern africa; east-africa; part i; food; heat; agriculture; variability; impacts
Abstract Maize (Zea mays L) is one of the most important food crops and very common in all parts of sub-Saharan Africa. In 2010 53 million tons of maize were produced in sub-Saharan Africa on about one third of the total harvested cropland area (similar to 33 million ha). Our aim is to identify the limiting agroclimatic variable for maize growth and development in sub-Saharan Africa by analyzing the separated and combined effects of temperature and precipitation. Under changing climate, both climate variables are projected to change severely, and their impacts on crop yields are frequently assessed using process-based crop models. However it is often unclear which agroclimatic variable will have the strongest influence on crop growth and development under climate change and previous studies disagree over this question. We create synthetic climate data in order to study the effect of large changes in the length of the wet season and the amount of precipitation during the wet season both separately and in combination with changes in temperature. The dynamic global vegetation model for managed land LPJmL is used to simulate maize yields under current and future climatic conditions for the two 10-year periods 2056-2065 and 2081-2090 for three climate scenarios for the A1b emission scenario but without considering the beneficial CO2 fertilization effect. The importance of temperature and precipitation effects on maize yields varies spatially and we identify four groups of crop yield changes: regions with strong negative effects resulting from climate change (<-33% yield change), regions with moderate (-33% to -10% yield change) or slight negative effects (-10% to +6% yield change), and regions with positive effects arising from climate change mainly in currently temperature-limited high altitudes (>+6% yield change). In the first three groups temperature increases lead to maize yield reductions of 3 to 20%, with the exception of mountainous and thus cooler regions in South and East Africa. A reduction of the wet season precipitation causes decreases in maize yield of at least 30% and prevails over the effect of increased temperatures in southern parts of Mozambique and Zambia, the Sahel and parts of eastern Africa in the two projection periods. This knowledge about the limiting abiotic stress factor in each region will help to prioritize future research needs in modeling of agricultural systems as well as in drought and heat stress breeding programs and to identify adaption options in agricultural development projects. On the other hand the study enhances the understanding of temperature and water stress effects on crop yields in a global vegetation model in order to identify future research and model development needs. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8181 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4508
Permanent link to this record
 

 
Author Houska, T.; Kraft, P.; Liebermann, R.; Klatt, S.; Kraus, D.; Haas, E.; Santabarbara, I.; Kiese, R.; Butterbach-Bahl, K.; Müller, C.; Breuer, L.
Title Rejecting hydro-biogeochemical model structures by multi-criteria evaluation Type Journal Article
Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 93 Issue Pages (down) 1-12
Keywords
Abstract Highlights • New method to investigate biogeochemical model structure performance. • Process based hydrological modelling can improve biogeochemical model predictions. • Modelling efficiency dramatically drops with multiple objectives. Abstract This work presents a novel way for assessing and comparing different hydro-biogeochemical model structures and their performances. We used the LandscapeDNDC modelling framework to set up four models of different complexity, considering two soil-biogeochemical and two hydrological modules. The performance of each model combination was assessed using long-term (8 years) data and applying different thresholds, considering multiple criteria and objective functions. Our results show that each model combination had its strength for particular criteria. However, only 0.01% of all model runs passed the complete rejectionist framework. In contrast, our comparatively applied assessments of single thresholds, as frequently used in other studies, lead to a much higher acceptance rate of 40–70%. Therefore, our study indicates that models can be right for the wrong reasons, i.e., matching GHG emissions while at the same time failing to simulate other criteria such as soil moisture or plant biomass dynamics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4983
Permanent link to this record
 

 
Author Rötter, R.P.; Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Basso, B.; Ruane, A.; Boote, K.J.; Thorburn, P.; Brisson, N.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Pertuzzi; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.-C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.
Title Quantifying Uncertainties in Modeling Crop Water Use under Climate Change Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages (down)
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Impacts World 2013, International Conference on Climate Change Effects, Potsdam, Germany, 2013-05-27 to 2013-05-30
Notes Approved no
Call Number MA @ admin @ Serial 2767
Permanent link to this record
 

 
Author Müller, C.; Stehfest, E.; van Minnen, J.; Strengers, B.; von, B.W.; Beusen, A.; Schaphoff, S.; Kram, T.; Lucht, W.
Title Reversal of the land biosphere carbon balance under climate and land-use change Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages (down)
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference European GeoSciences Union (EGU), General Assembly 2013, 2013-04-07 to 2013-04-12
Notes Approved no
Call Number MA @ admin @ Serial 2672
Permanent link to this record
 

 
Author Müller, C.; Elliott, J.
Title The Global Gridded Crop Model Intercomparison – Approaches, insights and caveats of modeling climate change impacts on agriculture at the global scale Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages (down)
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FAO expert consultation on climate change and trade, Rome, Italy, 2013-11-05 to 2013-11-06
Notes Approved no
Call Number MA @ admin @ Serial 2670
Permanent link to this record