|   | 
Details
   web
Records
Author (up) Schauberger, B.; Rolinski, S.; Müller, C.
Title A network-based approach for semi-quantitative knowledge mining and its application to yield variability Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 11 Issue 12 Pages 123001
Keywords yield variability; crop models; interaction network; plant process; wheat; maize; rice; Global Food Security; Climate-Change; Crop Production; Stress Tolerance; Wheat Yields; Heat-Stress; Temperature Variability; Environmental-Factors; United-States; Elevated CO2
Abstract Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. Asystematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
Address 2017-04-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4942
Permanent link to this record
 

 
Author (up) Schmitz, C.; Kreidenweis, U.; Lotze-Campen, H.; Popp, A.; Krause, M.; Dietrich, J.P.; Müller, C.
Title Agricultural trade and tropical deforestation: interactions and related policy options Type Journal Article
Year 2014 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 15 Issue 8 Pages 1757-1772
Keywords Land-use change; Trade liberalisation; Tropical deforestation; Forest; protection; Agricultural productivity growth; land-use; brazilian amazon; co2 concentrations; carbon emissions; conservation; climate; mitigation; forests; impact; growth; Environmental Sciences & Ecology
Abstract The extensive clearing of tropical forests throughout past decades has been partly assigned to increased trade in agricultural goods. Since further trade liberalisation can be expected, remaining rainforests are likely to face additional threats with negative implications for climate mitigation and the local environment. We apply a spatially explicit economic land-use model coupled to a biophysical vegetation model to examine linkages and associated policies between trade and tropical deforestation in the future. Results indicate that further trade liberalisation leads to an expansion of deforestation in Amazonia due to comparative advantages of agriculture in South America. Globally, between 30 and 60 million ha (5-10 %) of tropical rainforests would be cleared additionally, leading to 20-40 Gt additional emissions by 2050. By applying different forest protection policies, those values could be reduced substantially. Most effective would be the inclusion of avoided deforestation into a global emissions trading scheme. Carbon prices corresponding to the concentration target of 550 ppm would prevent deforestation after 2020. Investing in agricultural productivity reduces pressure on tropical forests without the necessity of direct protection. In general, additional trade-induced demand from developed and emerging countries should be compensated by international efforts to protect natural resources in tropical regions.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 1436-378x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4810
Permanent link to this record
 

 
Author (up) Stevanović, M.; Popp, A.; Bodirsky, B.L.; Humpenöder, F.; Müller, C.; Weindl, I.; Dietrich, J.P.; Lotze-Campen, H.; Kreidenweis, U.; Rolinski, S.; Biewald, A.; Wang, X.
Title Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices Type Journal Article
Year 2017 Publication Environmental Science and Technology Abbreviated Journal Environmental Science and Technology
Volume 51 Issue 1 Pages 365-374
Keywords
Abstract The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5007
Permanent link to this record
 

 
Author (up) Stevanović, M.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Müller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I.
Title The impact of high-end climate change on agricultural welfare Type Journal Article
Year 2016 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 2 Issue 8 Pages e1501452
Keywords ftnotmacsur
Abstract Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 5003
Permanent link to this record
 

 
Author (up) van Bussel, L.G.J.; Stehfest, E.; Siebert, S.; Müller, C.; Ewert, F.
Title Simulation of the phenological development of wheat and maize at the global scale Type Journal Article
Year 2015 Publication Global Ecology and Biogeography Abbreviated Journal Glob. Ecol. Biogeogr.
Volume 24 Issue 9 Pages 1018-1029
Keywords Agricultural management; crop calendars; cultivar; variety characteristics; global crop modelling; global harvest dates; phenology; climate-change; winter-wheat; annual crops; photoperiod sensitivity; geographical variation; temperature; responses; adaptation; cultivars; model
Abstract AimTo derive location-specific parameters that reflect the geographic differences among cultivars in vernalization requirements, sensitivity to day length (photoperiod) and temperature, which can be used to simulate the phenological development of wheat and maize at the global scale. LocationGlobal. Methods Based on crop calendar observations and literature describing the large-scale patterns of phenological characteristics of cultivars, we developed algorithms to compute location-specific parameters to represent this large-scale pattern. Vernalization requirements were related to the duration and coldness of winter, sensitivity to day length was assumed to be represented by the minimum and maximum day lengths occurring at a location, and sensitivity to temperature was related to temperature conditions during the vegetative development phase of the crop. Results Application of the derived location-specific parameters resulted in high agreement between simulated and observed lengths of the cropping period. Agreement was especially high for wheat, with mean absolute errors of less than 3 weeks. In the main maize cropping regions, cropping periods were over- and underestimated by 0.5-1.5 months. We also found that interannual variability in simulated wheat harvest dates was more realistic when accounting for photoperiod effects. Main conclusions The methodology presented here provides a good basis for modelling the phenological characteristics of cultivars at the global scale. We show that current global patterns of growing season length as described in cropping calendars can be largely reproduced by phenology models if location-specific parameters are derived from temperature and day length indicators. Growing seasons can be modelled more accurately for wheat than for maize, especially in warm regions. Our method for computing parameters for phenology models from temperature and day length offers opportunities to improve the simulation of crop productivity by crop simulation models developed for large spatial areas and for long-term climate impact projections that account for adaptation in the selection of varieties
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-822x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4729
Permanent link to this record