|   | 
Details
   web
Records
Author Lotze-Campen, H.; Verburg, P.H.; Popp, A.; Lindner, M.; Verkerk, P.J.; Moiseyev, A.; Schrammeijer, E.; Helming, J.; Tabeau, A.; Schulp, C.J.E.; van der Zanden, E.H.; Lavalle, C.; e Silva, F.B.; Walz, A.; Bodirsky, B.
Title A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways Type Journal Article
Year 2018 Publication (up) Regional Environmental Change Abbreviated Journal Reg. Environ. Change
Volume 18 Issue 3 Pages 751-762
Keywords Land use change; Integrated modelling; Cross-scale interaction; Nature protection; Impact assessment
Abstract Protection of natural or semi-natural ecosystems is an important part of societal strategies for maintaining biodiversity, ecosystem services, and achieving overall sustainable development. The assessment of multiple emerging land use trade-offs is complicated by the fact that land use changes occur and have consequences at local, regional, and even global scale. Outcomes also depend on the underlying socio-economic trends. We apply a coupled, multi-scale modelling system to assess an increase in nature protection areas as a key policy option in the European Union (EU). The main goal of the analysis is to understand the interactions between policy-induced land use changes across different scales and sectors under two contrasting future socio-economic pathways. We demonstrate how complementary insights into land system change can be gained by coupling land use models for agriculture, forestry, and urban areas for Europe, in connection with other world regions. The simulated policy case of nature protection shows how the allocation of a certain share of total available land to newly protected areas, with specific management restrictions imposed, may have a range of impacts on different land-based sectors until the year 2040. Agricultural land in Europe is slightly reduced, which is partly compensated for by higher management intensity. As a consequence of higher costs, total calorie supply per capita is reduced within the EU. While wood harvest is projected to decrease, carbon sequestration rates increase in European forests. At the same time, imports of industrial roundwood from other world regions are expected to increase. Some of the aggregate effects of nature protection have very different implications at the local to regional scale in different parts of Europe. Due to nature protection measures, agricultural production is shifted from more productive land in Europe to on average less productive land in other parts of the world. This increases, at the global level, the allocation of land resources for agriculture, leading to a decrease in tropical forest areas, reduced carbon stocks, and higher greenhouse gas emissions outside of Europe. The integrated modelling framework provides a method to assess the land use effects of a single policy option while accounting for the trade-offs between locations, and between regional, European, and global scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium
Area TradeM Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5004
Permanent link to this record
 

 
Author Stevanović, M.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Müller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I.
Title The impact of high-end climate change on agricultural welfare Type Journal Article
Year 2016 Publication (up) Science Advances Abbreviated Journal Sci. Adv.
Volume 2 Issue 8 Pages e1501452
Keywords ftnotmacsur
Abstract Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 5003
Permanent link to this record
 

 
Author Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Popp, A.; Muller, C.
Title Forecasting technological change in agriculture-An endogenous implementation in a global, and use model Type Journal Article
Year 2014 Publication (up) Technological Forecasting and Social Change Abbreviated Journal Technological Forecasting and Social Change
Volume 81 Issue Pages 236-249
Keywords Technological change; Land use; Agricultural productivity; Land use; intensity; Research and development; land-use; research expenditures; productivity growth; impact; deforestation; forest; yield; Business & Economics; Public Administration
Abstract Technological change in agriculture plays a decisive role for meeting future demands for agricultural goods. However, up to now, agricultural sector models and models on land use change have used technological change as an exogenous input due to various information and data deficiencies. This paper provides a first attempt towards an endogenous implementation based on a measure of agricultural land use intensity. We relate this measure to empirical data on investments in technological change. Our estimated yield elasticity with respect to research investments is 029 and production costs per area increase linearly with an increasing yield level. Implemented in the global land use model MAgPIE (”Model of Agricultural Production and its Impact on the Environment”) this approach provides estimates of future yield growth. Highest future yield increases are required in Sub-Saharan Africa, the Middle East and South Asia. Our validation with FAO data for the period 1995-2005 indicates that the model behavior is in line with observations. By comparing two scenarios on forest conservation we show that protecting sensitive forest areas in the future is possible but requires substantial investments into technological change. (C) 2013 Elsevier Inc. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-1625 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4789
Permanent link to this record
 

 
Author Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Popp, A.; Müller, C.
Title Forecasting technological change in agriculture—An endogenous implementation in a global land use model Type Journal Article
Year 2014 Publication (up) Technological Forecasting and Social Change Abbreviated Journal Technological Forecasting and Social Change
Volume 81 Issue Pages 236-249
Keywords Technological change; Land use; Agricultural productivity; Land use intensity; Research and development; land-use; research expenditures; productivity growth; impact; deforestation; forest; yield; Business & Economics; Public Administration
Abstract ► Endogenous technological change in an economic land use model ► Estimation of yield elasticity with respect to investments in technological change ► Projections of future agricultural productivity rates ► Validation with observed data and historic trends ► Trade-off between required technological change and forest protection objectives Technological change in agriculture plays a decisive role for meeting future demands for agricultural goods. However, up to now, agricultural sector models and models on land use change have used technological change as an exogenous input due to various information and data deficiencies. This paper provides a first attempt towards an endogenous implementation based on a measure of agricultural land use intensity. We relate this measure to empirical data on investments in technological change. Our estimated yield elasticity with respect to research investments is 0.29 and production costs per area increase linearly with an increasing yield level. Implemented in the global land use model MAgPIE (“Model of Agricultural Production and its Impact on the Environment”) this approach provides estimates of future yield growth. Highest future yield increases are required in Sub-Saharan Africa, the Middle East and South Asia. Our validation with FAO data for the period 1995–2005 indicates that the model behavior is in line with observations. By comparing two scenarios on forest conservation we show that protecting sensitive forest areas in the future is possible but requires substantial investments into technological change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-1625 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4518
Permanent link to this record
 

 
Author Bennett, E.; Carpenter, S.R.; Gordon, L.J.; Ramankutty, N.; Balvanera, P.; Campbell, B.; Cramer, W.; Foley, J.; Folke, C.; Carlberg, L.; Lui, J.; Lotze-Campen, H.; Mueller, N.D.; Peterson, G.D.; Polasky, S.; Rockström, J.; Scholes, R.J.; Spierenburg, M.
Title Toward a more resilient agriculture Type Journal Article
Year 2014 Publication (up) The Solutions Journal Abbreviated Journal The Solutions Journal
Volume 5 Issue 5 Pages 65-75
Keywords
Abstract Agriculture is a key driver of change in the Anthropocene. It is both a critical factor for human well-being and development and a major driver of environmental decline. As the human population expands to more than 9 billion by 2050, we will be compelled to find ways to adequately feed this population while simultaneously decreasing the environmental impact of agriculture, even as global change is creating new circumstances to which agriculture must respond. Many proposals to accomplish this dual goal of increasing agricultural production while reducing its environmental impact are based on increasing the efficiency of agricultural production relative to resource use and relative to unintended outcomes such as water pollution, biodiversity loss, and greenhouse gas emissions. While increasing production efficiency is almost certainly necessary, it is unlikely to be sufficient and may in some instances reduce long-term agricultural resilience, for example, by degrading soil and increasing the fragility of agriculture to pest and disease outbreaks and climate shocks. To encourage an agriculture that is both resilient and sustainable, radically new approaches to agricultural development are needed. These approaches must build on a diversity of solutions operating at nested scales, and they must maintain and enhance the adaptive and transformative capacity needed to respond to disturbances and avoid critical thresholds. Finding such approaches will require that we encourage experimentation, innovation, and learning, even if they sometimes reduce short-term production efficiency in some parts of the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4657
Permanent link to this record