toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Popp, A.; Rose, S.K.; Calvin, K.; Van Vuuren, D.P.; Dietrich, J.P.; Wise, M.; Stehfest, E.; Humpenöder, F.; Kyle, P.; Van Vliet, J.; Bauer, N.; Lotze-Campen, H.; Klein, D.; Kriegler, E. url  doi
openurl 
  Title Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options Type Journal Article
  Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 123 Issue 3-4 Pages 495-509  
  Keywords bio-energy; miscanthus; emissions; crop  
  Abstract In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10-18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24-36 % of total cropland by 2100.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition (up) Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4499  
Permanent link to this record
 

 
Author Dietrich, J.P.; Popp, A.; Lotze-Campen, H. url  doi
openurl 
  Title Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model Type Journal Article
  Year 2013 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 263 Issue Pages 233-243  
  Keywords aggregation; downscaling; clustering; information conservation; land use model; scale; scales; agriculture; simulation; dynamics; pattern  
  Abstract Global land-use models have to deal with processes on several spatial scales, ranging from the global scale down to the farm level. The increasing complexity of modern land-use models combined with the problem of limited computational resources represents a challenge to modelers. One solution of this problem is to perform spatial aggregation based on a regular grid or administrative units such as countries. Unfortunately this type of aggregation flattens many regional differences and produces a homogenized map of the world. In this paper we present an alternative aggregation approach using clustering methods. Clustering reduces the loss of information due to aggregation by choosing an appropriate aggregation pattern. We investigate different clustering methods, examining their quality in terms of information conservation. Our results indicate that clustering is always a good choice and preferable compared to grid-based aggregation. Although all the clustering methods we tested delivered a higher degree of information conservation than grid-based aggregation, the choice of clustering method is not arbitrary. Comparing outputs of a model fed with original data and a model fed with aggregated data, bottom-up clustering delivered the best results for the whole range of numbers of clusters tested. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition (up) Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4488  
Permanent link to this record
 

 
Author Bishop, J.; Lotze-Campen, H. url  openurl
  Title XC8 Extreme events – Final report Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages XC8-D  
  Keywords  
  Abstract Following a MACSUR Workshop a joint working paper preliminary titled “More than a change in crop production: metrics and approaches to understand the impacts of extreme events on food security” is now in an advanced stage. A conference paper based on an M.Sc. thesis by Christoph Buschmann, titled “A model-based economic assessment of future climate variability impacts on global agricultural markets” has been presented and the International Conference of Agricultural Economists, 2015. We are working on a journal publication at the moment. Based on a B.Sc. thesis by Patrick Jeetze, we have submitted an abstract and held a presentation at the GlobalFood Symposium 2017, 28-29 April 2017 at Georg-August-University of Goettingen, Germany. Title: “Implications of future climate variability on food security: A model-based assessment of climate-induced crop price volatility impacts” We are currently working on a journal publication on this. Finally, we contributed one section to MACSUR's Research Gap Report (H0.1-D).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes XC Approved no  
  Call Number MA @ admin @ Serial 4953  
Permanent link to this record
 

 
Author Acharya, T.; Fanzo, J.; Gustafson, D.; Ingram, J.; Schneeman, B.; Allen, L.; Boote, K.; Drewnowski, A.; Ewert, F.; Hall, S.; Hendley, P.; Howden, M.; Janssen, S.; Jones, J.; Latulippe, M.; Lotze-Campen, H.; McDermott, J.; Meijl, H.V.; Nelson, G.; Newsome, R.; Roulin, A.; Scholes, B.; Tanumihardjo, S.; Tavill, G.; van der Mensbrugghe, D.; Wiebe, K. url  openurl
  Title Assessing Sustainable Nutrition Security: The Role of Food Systems: Working Paper Type Report
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ftnotmacsur  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C., U.S.A. Editor  
  Language Summary Language Original Title  
  Series Editor ILSI Research Foundation: Center for Integrated Modeling of Sustainable Agriculture and Nutrition Security Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4995  
Permanent link to this record
 

 
Author Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P. url  doi
openurl 
  Title Simulating and delineating future land change trajectories across Europe Type Journal Article
  Year 2015 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume Issue Pages in press  
  Keywords land use change; land system; modeling; scenario; Europe; ecosystem services  
  Abstract Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition (up) Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4996  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: