|
Records |
Links |
|
Author |
Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Prasad, P.V.V.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y. |
|
|
Title |
Rising temperatures reduce global wheat production |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Nature Climate Change |
Abbreviated Journal |
Nat. Clim. Change |
|
|
Volume |
5 |
Issue |
2 |
Pages |
143-147 |
|
|
Keywords |
climate-change; spring wheat; dryland wheat; yield; growth; drought; heat; CO2; agriculture; adaptation |
|
|
Abstract |
Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1758-678x |
ISBN |
|
Medium |
Article |
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
CropM, ft_macsur |
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
4550 |
|
Permanent link to this record |
|
|
|
|
Author |
Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. |
|
|
Title |
Food security and food production systems |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
485-533 |
|
|
Keywords |
CropM |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Cambridge University Press |
Place of Publication |
Cambridge, United Kingdom and New York, NY, USA |
Editor |
Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; Girma, B.; Kissel, E.S.; Levy, A.N.; MacCracken, S.; Mastrandrea, P.R.; White, L.L. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC) |
Abbreviated Series Title |
|
|
|
Series Volume |
Climate Change 2014: Impacts, Adaptation, and Vuln |
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
2734 |
|
Permanent link to this record |