|   | 
Details
   web
Records
Author (up) Lellei-Kovács, E.; Barcza, Z.; Hidy, D.; Horváth, F.; Ittzés, D.; Ittzés, P.; Ma, S.; Bellocchi, G.
Title Application of Biome-BGC MuSo in managed grassland ecosystems in the Euro-Mediteranean region Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Simulation of the biogeochemical cycles of extensively and intensively managed grasslands and croplands are of particular interest due to the strong connection between ecosystem production, animal husbandry and food security. In the frame of MACSUR LiveM activities, we conducted a series of „blind tests” (i.e. uncalibrated model simulations with previously optimized model) on differently managed grasslands within Europe and Israel. We used the latest version of Biome-BGC MuSo model, the modified version of the widely used biogeochemical Biome-BGC model. Biome-BGC MuSo contains structural improvements, development of management modules, and the extension of the model to simulate herbaceouos ecosystem carbon and water cycles more faithfully. The studied ecosystems were meadows and pastures located in a variety of climate zones from the Atlantic sector to Central Europe, including Mediterranean sites. Managements were intensive and extensive grazing or mowing with or without different kind of fertilizers. Under similar options we simulated ecosystem variables, e.g. Gross Primary Production (GPP) and Net Ecosystem Exchange (NEE). Our experiences show that different sites have different sensitivity to the parameters (maximum root depth, soil parameters, etc.), but overall the model provided realistic fluxes. Experiences gained during the blind tests led us to further improve the model. Biome-BGC MuSo is available as a standalone model in personal computers, but also through virtual laboratory environment and Biome-BGC Projects database (http://ecos.okologia.mta.hu/bbgcdb) developed within the BioVeL project (http://www.biovel.eu). Scientific workflow management, web service and desktop grid technology can support model optimization in the so-called „calibrated runs” within MACSUR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5054
Permanent link to this record
 

 
Author (up) Ma, S.; Acutis, M.; Barcza, Z.; Ben, T., H.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Perego, A.; Rolinski, S.; Ruget, F.; Seddaiu, G.; Wu, L.; Bellocchi, G.
Title The grassland model intercomparison of the MACSUR (Modelling European Agriculture with Climate Change for Food Security) European knowledge hub Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 7th International Congress on Environmental Modelling and Software, 2014-06-15 to 2014-06-19
Notes Approved no
Call Number MA @ admin @ Serial 2618
Permanent link to this record
 

 
Author (up) Ma, S.; Ben, T., H.; Lellei-Kovács, E.; Barcza, Z.; Hidy, D.; Bellocchi, G.
Title Grassland model intercomparison of the knowledge hub MACSUR: illustrative results from the models PaSim and Biome-BGC MuSo Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference XIII ESA congress, Debrecen, Hungary, 2014-08-25 to 2014-08-29
Notes Approved no
Call Number MA @ admin @ Serial 2617
Permanent link to this record
 

 
Author (up) Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego, A.; Rolinski, S.; Ruget, F.; Sanna, M.; Seddaiu, G.; Wu, L.; Bellocchi, G.
Title Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume Issue Pages
Keywords Biomass; Grasslands; Modelling; Multi-model ensemble; Soil processes
Abstract • We simulate biomass, soil water content (SWC) and temperature (ST) in grasslands. • We compare nine models to the multi-model median (MMM) at nine sites. • With model calibration, we obtain satisfactory estimates of ST, less of SWC and biomass. • We observe discrepancies across models in the simulation of grassland processes. • We improve performance with multi-model approach. This study presents results from a major grassland model intercomparison exercise, and highlights the main challenges faced in the implementation of a multi-model ensemble prediction system in grasslands. Nine, independently developed simulation models linking climate, soil, vegetation and management to grassland biogeochemical cycles and production were compared in a simulation of soil water content (SWC) and soil temperature (ST) in the topsoil, and of biomass production. The results were assessed against SWC and ST data from five observational grassland sites representing a range of conditions – Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland – and against yield measurements from the same sites and other experimental grassland sites in Europe and Israel. We present a comparison of model estimates from individual models to the multi-model ensemble (represented by multi-model median: MMM). With calibration (seven out of nine models), the performances were acceptable for weekly-aggregated ST (R² > 0.7 with individual models and >0.8–0.9 with MMM), but less satisfactory with SWC (R² < 0.6 with individual models and < ∼ 0.5 with MMM) and biomass (R² < ∼0.3 with both individual models and MMM). With individual models, maximum biases of about −5 °C for ST, −0.3 m3 m−3 for SWC and 360 g DM m−2 for yield, as well as negative modelling efficiencies and some high relative root mean square errors indicate low model performance, especially for biomass. We also found substantial discrepancies across different models, indicating considerable uncertainties regarding the simulation of grassland processes. The multi-model approach allowed for improved performance, but further progress is strongly needed in the way models represent processes in managed grassland systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium
Area LiveM Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 4768
Permanent link to this record
 

 
Author (up) Sándor, R.; Barcza, Z.; Hidy, D.; Lellei-Kovács, E.; Ma, S.; Bellocchi, G.
Title Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models Type Journal Article
Year 2016 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.
Volume 215 Issue Pages 1-19
Keywords carbon-water fluxes; climate change; grasslands; model comparison; net ecosystem exchange; terrestrial carbon balance; pasture simulation-model; climate-change; nitrous-oxide; land-use; co2; photosynthesis; responses; water
Abstract Two independently developed simulation models – the grassland-specific PaSim and the biome-generic Biome-BGC MuSo (BBGC MuSo) – linking climate, soil, vegetation and management to ecosystem biogeochemical cycles were compared in a simulation of carbon (C) and water fluxes. The results were assessed against eddy-covariance flux data from five observational grassland sites representing a range of conditions in Europe: Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland. Model comparison (after calibration) gave substantial agreement, the performances being marginal to acceptable for weekly-aggregated gross primary production and ecosystem respiration (R-2 similar to 0.66 – 0.91), weekly evapotranspiration (R-2 similar to 0.78 – 0.94), soil water content in the topsoil (R-2 similar to 0.1 -0.7) and soil temperature (R-2 similar to 0.88 – 0.96). The bias was limited to the range -13 to 9 g C m(-2) week(-1) for C fluxes (-11 to 8 g C m(-2) week(-1) in case of BBGC MuSo, and -13 to 9 g C m(-2) week(-1) in case of PaSim) and -4 to 6 mm week for water fluxes (with BBGC MuSo providing somewhat higher estimates than PaSim), but some higher relative root mean square errors indicate low accuracy for prediction, especially for net ecosystem exchange The sensitivity of simulated outputs to changes in atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation indicate, with certain agreement between the two models, that C outcomes are dominated by [CO2] and temperature gradients, and are less due to precipitation. ET rates decrease with increasing [CO2] in PaSim (consistent with experimental knowledge), while lack of appropriate stomatal response could be a limit in BBGC MuSo responsiveness. Results of the study indicate that some of the errors might be related to the improper representation of soil water content and soil temperature. Improvement is needed in the model representations of soil processes (especially soil water balance) that strongly influence the biogeochemical cycles of managed and unmanaged grasslands. (C) 2015 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8809 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4808
Permanent link to this record