|   | 
Details
   web
Records
Author Rodriguez, A.; Ruiz-Ramos, M.; Palosuo, T.; Carter, T.R.; Fronzek, S.; Lorite, I.J.; Ferrise, R.; Pirttioja, N.; Bindi, M.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Hohn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Roetter, R.P.
Title Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations Type Journal Article
Year 2019 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 264 Issue Pages 351-362
Keywords Wheat adaptation; Uncertainty; Climate change; Decision support; Response surface; Outcome confidence; Climate-Change Impacts; Response Surfaces; Wheat; Uncertainty; Yield; Simulation; 21St-Century; Productivity; Temperature; Projections
Abstract unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivwn L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.
Address 2019-01-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 5214
Permanent link to this record
 

 
Author Murat, M.; Malinowska, I.; Gos, M.; Krzyszczak, J.
Title Forecasting daily meteorological time series using ARIMA and regression models Type Journal Article
Year 2018 Publication International Agrophysics Abbreviated Journal Int. Agrophys.
Volume 32 Issue 2 Pages 253-264
Keywords regression models; forecast; time series; meteorological quantities; Response Surfaces; Extreme Heat; Wheat; Climate
Abstract The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt-Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.
Address 2018-06-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0236-8722 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 5202
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Hoehn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Roetter, R.P.
Title Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment Type Journal Article
Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 260-274
Keywords Wheat adaptation; Sensitivity analysis; Crop model ensemble; Rainfed, Mediterranean cropping system; AOCK concept; Iberian Peninsula; Simulation-Model; Change Impacts; Crop; Uncertainty; Ensemble; Europe; Yield; Productivity; Irrigation
Abstract Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T.),[CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty. (C) 2017 Elsevier Ltd. All rights reserved.
Address 2018-01-25
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 5184
Permanent link to this record
 

 
Author Baranowski, P.; Krzyszczak, J.R.; Sławiński, C.F.
Title Self-similarity analysis of chosen agro-meteorological time series Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The most usual records of observable agro-meteorological quantities are in the form of time series and the knowledge about their scaling properties is fundamental for  transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated because of  the presence of localized trends and nonstationarities. The objective of this study was to characterize scaling properties (i.e. statistical self-similarity) of the  chosen agro-meteorological quantities through multifractal detrended fluctuation analysis (MFDFA). The MDFA analysis was performed  for time series of the air temperature, wind velocity and relative air humidity (at the height of 2 m above the  active surface) as well as the soil temperature (at 10 cm depth in the soil). The studied data were hourly interval, 12 years’ time series from the agro-meteorological station in Felin, near Lublin, Poland. The empirical singularity spectra  indicated their multifractal structure. The richness of the studied multifractals was evaluated by the width of their spectrum, indicating their considerable differences in dynamics and development. The log-log plots of the cumulative distributions of all the studied absolute and normalized meteorological parameters tended to linear functions for high values of the response  indicating that these distributions were consistent with the power law asymptotic behaviour. Additionally, we investigated the type of multifractality, that underlies the q-dependence of the generalized Hurst exponent, by analyzing the corresponding shuffled and surrogate time series. For majority of studied quantities, the multifractality was due to different long-range correlation for small and large fluctuations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial (down) 5124
Permanent link to this record
 

 
Author Krzyszczak, J.R.; Baranowski, P.; Sławiński, C.
Title CO2 flux measurements in the vegetation period of winter wheat in Lubelskie province Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The assessment of net ecosystem exchange and respiration of ecosystem of terrestrial ecosystems is necessary to improve our knowledge about carbon cycle in nature. Here we present measurements of CO2 fluxes for a winter wheat temperate climate ecosystem (buckwheat in the previous years) located in the Lubelskie province (eastern Poland) using a closed dynamic chamber system over a 2013 vegetation season. Measurements of carbon dioxide emission from soils and its assimilation by plants were carried out on a typical for Lubelskie highland arable land located in the Stany Nowe (N50o49’17.0555”, E22o16’28.51”, height 243m above sea level) using the set of two chambers (transparent and dark). Carbon dioxide fluxes have been measured by EGM-4 PP Systems sensor during fixed stages of the plant growing season. During the experiment carbon emission from soil ranged from 151 to 764 mg C·m-2·h-1 and its assimilation by plants ranged from -148 (emission) to 1585 mg C·m-2·h-1. We found substantial differences in emission and assimilation of carbon in the winter wheat ecosystem. This, along with other measurements (meteorological factors and soil and plant parameters) carried out in the Stany Nowe can be used as a high quality data to verify various models of  emission of greenhouse gases. The chamber technique occurs to be  a useful tool for determining carbon dioxide exchange between ecosystem surface and the atmosphere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial (down) 5064
Permanent link to this record