toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kim, Y.; Seo, Y.; Kraus, D.; Klatt, S.; Haas, E.; Tenhunen, J.; Kiese, R. doi  openurl
  Title Estimation and mitigation of N₂O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea Type Journal Article
  Year 2015 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment  
  Volume 529 Issue (up) Pages 40-53  
  Keywords Agriculture; Air Pollutants/*analysis; Air Pollution/prevention & control/*statistics & numerical data; Crops, Agricultural; *Environmental Monitoring; Fertilizers; Nitrogen Dioxide/*analysis; Republic of Korea; LandscapeDNDC; Mitigation strategies; N2O; Nitrate leaching; Water quality  
  Abstract Considering intensive agricultural management practices and environmental conditions, the LandscapeDNDC model was applied for simulation of yields, N2O emission and nitrate leaching from major upland crops and temperate deciduous forest of the Haean catchment, South Korea. Fertilization rates were high (up to 314 kg N ha(-1) year(-1)) and resulted in simulated direct N2O emissions from potato, radish, soybean and cabbage fields of 1.9 and 2.1 kg N ha(-1) year(-1) in 2009 and 2010, respectively. Nitrate leaching was identified as the dominant pathway of N losses in the Haean catchment with mean annual rates of 112.2 and 125.4 kg N ha(-1) year(-1), causing threats to water quality and leading to substantial indirect N2O emissions of 0.84 and 0.94 kg N ha(-1) year(-1) in 2009 and 2010 as estimates by applying the IPCC EF5. Simulated N2O emissions from temperate deciduous forest were low (approx. 0.50 kg N ha(-1) year(-1)) and predicted nitrate leaching rates were even negligible (≤0.01 kg N ha(-1) year(-1)). On catchment scale more than 50% of the total N2O emissions and up to 75% of nitrate leaching originated from fertilized upland fields, only covering 24% of the catchment area. Taking into account area coverage of simulated upland crops and other land uses these numbers agree well with nitrate loads calculated from discharge and concentration measurements at the catchment outlet. The change of current agricultural management practices showed a high potential of reducing N2O emission and nitrate leaching while maintaining current crop yields. Reducing (39%) and splitting N fertilizer application into 3 times was most effective and lead to about 54% and 77% reducing of N2O emission and nitrate leaching from the Haean catchment, the latter potentially contributing to improved water quality in the Soyang River Dam, which is the major source of drinking water for metropolitan residents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4684  
Permanent link to this record
 

 
Author Zhang, W.; Liu, C.; Zheng, X.; Zhou, Z.; Cui, F.; Zhu, B.; Haas, E.; Klatt, S.; Butterbach-Bahl, K.; Kiese, R. url  doi
openurl 
  Title Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 140 Issue (up) Pages 1-10  
  Keywords Model ensemble; Straw incorporation; Irrigation; Fertilization; Calcareous soil; North China Plain; process-oriented model; soil organic-matter; biogeochemical model; cropping system; N2O emissions; forest soils; microbial-growth; rainfall events; calcareous soil  
  Abstract The DNDC, LandscapeDNDC and IAP-N-GAS models have been designed to simulate the carbon and nitrogen processes of terrestrial ecosystems. Until now, a comparison of these models using simultaneous observations has not been reported, although such a comparison is essential for further model development and application. This study aimed to evaluate the performance of the models, delineate the strengths and limitations of each model for simulating soil nitrous oxide (N2O) and nitric oxide (NO) emissions, and explore short-comings of these models that may require reconsideration. We conducted comparisons among the models using simultaneous observations of both gases and relevant variables from the winter wheat-summer maize rotation system at three field sites with calcareous soils. Simulations of N2O and NO emissions by the three models agreed well with annual observations, but not with daily observations. All models failed to correctly simulate soil moisture, which could explain some of the incorrect daily fluxes of N2O and NO, especially for intensive fluxes during the growing season. Multi-model ensembles are promising approaches to better simulate daily gas emissions. IAP-N-GAS underestimated the priming effect of straw incorporation on N2O and NO emissions, but better results were obtained with DNDC95 and LandscapeDNDC. LandscapeDNDC and IAP-N-GAS need to improve the simulation of irrigation water allocation and residue decomposition processes, respectively, and together to distinguish different irrigation methods as DNDC95 does. All three models overestimated the emissions of the nitrogenous gases for high nitrogen fertilizer (>430 kg N ha(-1) yr(-1)) addition treatments, and therefore, future research should focus more on the simulation of the limitation of soil dissolvable organic carbon on denitrification in calcareous soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4685  
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Sosa, C.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Grosz, B.; Dechow, R.; Kuhnert, M.; Yeluripati, J.; Kiese, R.; Haas, E.; Klatt, S.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Vanuytrecht, E.; Tao, F.; Rötter, R.; Cammarano, D.; Asseng, S.; Weihermüller, L.; Siebert, S.; Gaiser, T.; Ewert, F. openurl 
  Title Effects of soil and climate input data aggregation on modelling regional crop yields Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title MACSUR Science Conference  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference, 2015-04-08 to 2015-04-10, Reading, United Kingdom  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5037  
Permanent link to this record
 

 
Author Klatt, S.; Haas, E.; Hoffmann, H.; Zhao, G.; Van Bussel, L.G.J.; Enders, A.; Gaiser, T.; Ewert, F.; Teixeira, E.; Kiese, R.; Doro, L.; Specka, X.; Nendel, C.; Kersebaum, K.-C.; Sosa, C.; Lewan, E.; Eckersten, H.; Gebbert, S.; Dechow, R.; Grosz, B.; Bach, M.; Yeluripati, J.; Tao, F.; Constantin, J.; Raynal, H.; Wallach, D.; Kuhnert, M. openurl 
  Title Responses of soil N2O emissions and nitrate leaching on climate input data aggregation: a biogeochemistry model ensemble study Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title CropM International Symposium and Workshop  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CropM International Symposium and Workshop, 2014-02-10 to 2014-02-12, Oslo, Norway  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5042  
Permanent link to this record
 

 
Author Haas, E.; Klatt, S.; Kiese, R.; Santa Barbara Ruiz, I.; Kraus, D. url  openurl
  Title Parameter-induced uncertainty quantification of a regional N2O and NO3 inventory using the biogeochemical model LandscapeDNDC Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract In this study we quantify regional parameter-induced model uncertainty on nitrous oxide (N2O) emissions and nitrate (NO3) leaching from arable soils of Saxony (Germany) using the biogeochemical model LandscapeDNDC. For this we calculate a regional inventory using a joint parameter distribution for key parameters describing microbial C and N turnover processes as obtained by a Bayesian calibration study. We representatively sampled 400 different parameter vectors from the discrete joint parameter distribution comprising approximately 400,000 parameter combinations and used these to calculate 400 individual realizations of the regional inventory. The spatial domain (represented by 4042 polygons) is set up with spatially explicit soil and climate information and a region-typical 3-year crop rotation consisting of winter wheat, rape- seed, and winter barley. Average N2O emission from arable soils in the state of Saxony across all 400 realizations was 1.43 ± 1.25 [kg N / ha] with a median value of 1.05 [kg N / ha]. Using the default IPCC emission factor approach (Tier 1) for direct emissions reveal a higher average N2O emission of 1.51 [kg N / ha] due to fertilizer use. In the regional uncertainty quantification the 20% likelihood range for N2O emissions is 0.79 – 1.37 [kg N / ha] (50% likelihood: 0.46 – 2.05 [kg N / ha]; 90% likelihood: 0.11 – 4.03 [kg N / ha]). Respective quantities were calculated for nitrate leaching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5111  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: