|   | 
Details
   web
Records
Author van Middelkoop, J.C.; Kipling, R.P.
Title Modelling the impact of climate change on livestock productivity at the farm-scale: An inventory of LiveM outcomes Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume (up) 10 Issue Pages L2.4-D
Keywords
Abstract The report presented here provides an inventory of reports and conference papers  produced by the partners of the livestock and grassland modelling theme (LiveM) of the  Modelling European Agriculture with Climate Change for Food Security (MACSUR)  knowledge hub. The findings presented illustrate the diverse nature of the multidisciplinary  LiveM research community, and provide a reference source for those seeking  to identify and pull out farm-level modelling outputs from the work of MACSUR and its  partners. The survey of farm-scale outputs from LiveM revealed the interdependent, dual  role of a knowledge hub: to increase the capacity of modelling to meet stakeholder and  societal needs under climate change, and to apply that increased capacity to provide new  understanding and solutions at the policy and (the focus here) farm scale. While capacity  building work across disciplines is time-consuming, difficult, and to a large extent invisible  to stakeholders, such work is vital to ensuring that subsequent scientific outcomes reflect  best practice, and integrated expertise. Long term, sustained funding of network-based  capacity building activities is highlighted as essential to ensuring that the farm-scale  modelling work highlighted here can continue to build on ongoing improvements in model  quality, flexibility and stakeholder relevance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4958
Permanent link to this record
 

 
Author Topp, K.; Eory, V.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; Del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.; Lauwers, L.; Özkan Gülzari, Ş.; Rolinski, S.; Ruiz Ramos, M.; Sandars, D.L.; Sándor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Weindl, I.; Kipling, R.P.
Title Modelling climate change adaptation in European agriculture: Definitions and Current Modelling Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume (up) 10 Issue Pages L2.3.2-D
Keywords
Abstract Confidential content, in preparation for a peer-reviewed publication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4959
Permanent link to this record
 

 
Author Saetnan, E.R.; Kipling, R.P.
Title Evaluating a European knowledge hub on climate change in agriculture: Are we building a better connected community Type Journal Article
Year 2016 Publication Scientometrics Abbreviated Journal Scientometrics
Volume (up) 109 Issue 2 Pages 1057-1074
Keywords Agriculture; Climate change; Interdisciplinary collaboration; Co-authorship; networks; EU research policy; Collaborative funding initiatives; Knowledge hub
Abstract In order to maintain food security and sustainability of production under climate change, interdisciplinary and international collaboration in research is essential. In the EU, knowledge hubs are important funding instruments for the development of an interconnected European Research Area. Here, network analysis was used to assess whether the pilot knowledge hub MACSUR has affected interdisciplinary collaboration, using co-authorship of peer reviewed articles as a measure of collaboration. The broad community of all authors identified as active in the field of agriculture and climate change was increasingly well connected over the period studied. Between knowledge hub members, changes in network parameters suggest an increase in collaborative interaction beyond that expected due to network growth, and greater than that found in the broader community. Given that interdisciplinary networks often take several years to have an impact on research outputs, these changes within the relatively new MACSUR community provide evidence that the knowledge hub structure has been effective in stimulating collaboration. However, analysis showed that knowledge hub partners were initially well-connected, suggesting that the initiative may have gathered together researchers with particular resources or inclinations towards collaborative working. Long term, consistent funding and ongoing reflection to improve networking structures may be necessary to sustain the early positive signs from MACSUR, to extend its success to a wider community of researchers, or to repeat it in less connected fields of science. Tackling complex challenges such as climate change will require research structures that can effectively support and utilise the diversity of talents beyond the already well-connected core of scientists at major research institutes. But network research shows that this core, well-connected group are vital brokers in achieving wider integration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0138-9130 1588-2861 ISBN Medium
Area LiveM Expedition Conference
Notes LiveM; wos; ft=macsur; macsur-text; wsnotyet Approved no
Call Number MA @ admin @ Serial 4760
Permanent link to this record
 

 
Author Kipling, R.P.; Topp, C.F.E.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.J.; Lauwers, L.; Gulzari, S.O.; Reidsma, P.; Rolinski, S.; Ruiz-Ramos, M.; Sandars, D.L.; Sandor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Shrestha, S.; Weindl, I.; Eory, V.
Title To what extent is climate change adaptation a novel challenge for agricultural modellers Type Journal Article
Year 2019 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume (up) 120 Issue Pages Unsp 104492
Keywords Adaptation; Agricultural modelling; Climate change; Research challenges; greenhouse-gas emissions; farm-level adaptation; land-use; food; security; adapting agriculture; livestock production; decision-making; change impacts; dairy farms; crop
Abstract Modelling is key to adapting agriculture to climate change (CC), facilitating evaluation of the impacts and efficacy of adaptation measures, and the design of optimal strategies. Although there are many challenges to modelling agricultural CC adaptation, it is unclear whether these are novel or, whether adaptation merely adds new motivations to old challenges. Here, qualitative analysis of modellers’ views revealed three categories of challenge: Content, Use, and Capacity. Triangulation of findings with reviews of agricultural modelling and Climate Change Risk Assessment was then used to highlight challenges specific to modelling adaptation. These were refined through literature review, focussing attention on how the progressive nature of CC affects the role and impact of modelling. Specific challenges identified were: Scope of adaptations modelled, Information on future adaptation, Collaboration to tackle novel challenges, Optimisation under progressive change with thresholds, and Responsibility given the sensitivity of future outcomes to initial choices under progressive change.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5223
Permanent link to this record
 

 
Author Kipling, R.P.; Bannink, A.; Bellocchi, G.; Dalgaard, T.; Fox, N.J.; Hutchings, N.J.; Kjeldsen, C.; Lacetera, N.; Sinabell, F.; Topp, C.F.E.; van Oijen, M.; Virkajärvi, P.; Scollan, N.D.
Title Modeling European ruminant production systems: Facing the challenges of climate change Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume (up) 147 Issue Pages 24-37
Keywords Food security; Livestock systems; Modeling; Pastoral systems; Policy support; Ruminants
Abstract Ruminant production systems are important producers of food, support rural communities and culture, and help to maintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these systems also contribute significantly to climate change through greenhouse gas (GHG) emissions, while intensi- fication of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the relationships between climate change, management and policy choices, food production, and the maintenance of ecosystem services. This paper 1) provides an overview of how ruminant systems modeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to climate change and 2) provides ideas for enhancing modeling to fulfil this role. Many grassland models can predict plant growth, yield and GHG emissions from mono-specific swards, but modeling multi-species swards, grassland quality and the impact of management changes requires further development. Current livestock models provide a good basis for predicting animal production; linking these with models of animal health and disease is a prior- ity. Farm-scale modeling provides tools for policymakers to predict the emissions of GHG and other pollutants from livestock farms, and to support the management decisions of farmers from environmental and economic standpoints. Other models focus on how policy and associated management changes affect a range of economic and environmental variables at regional, national and European scales. Models at larger scales generally utilise more empirical approaches than those applied at animal, field and farm-scales and include assumptions which may not be valid under climate change conditions. It is therefore important to continue to develop more realistic representations of processes in regional and global models, using the understanding gained from finer-scale modeling. An iterative process of model development, in which lessons learnt from mechanistic models are ap- plied to develop ‘smart’ empirical modeling, may overcome the trade-off between complexity and usability. De- veloping the modeling capacity to tackle the complex challenges related to climate change, is reliant on closer links between modelers and experimental researchers, and also requires knowledge-sharing and increasing technical compatibility across modeling disciplines. Stakeholder engagement throughout the process of model development and application is vital for the creation of relevant models, and important in reducing problems re- lated to the interpretation of modeling outcomes. Enabling modeling to meet the demands of policymakers and other stakeholders under climate change will require collaboration within adequately-resourced, long-term inter-disciplinary research networks
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium Review
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4734
Permanent link to this record