toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Haas, E.; Klatt, S.; Kiese, R.; Santa Barbara Ruiz, I.; Kraus, D. url  openurl
  Title Parameter-induced uncertainty quantification of a regional N2O and NO3 inventory using the biogeochemical model LandscapeDNDC Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this study we quantify regional parameter-induced model uncertainty on nitrous oxide (N2O) emissions and nitrate (NO3) leaching from arable soils of Saxony (Germany) using the biogeochemical model LandscapeDNDC. For this we calculate a regional inventory using a joint parameter distribution for key parameters describing microbial C and N turnover processes as obtained by a Bayesian calibration study. We representatively sampled 400 different parameter vectors from the discrete joint parameter distribution comprising approximately 400,000 parameter combinations and used these to calculate 400 individual realizations of the regional inventory. The spatial domain (represented by 4042 polygons) is set up with spatially explicit soil and climate information and a region-typical 3-year crop rotation consisting of winter wheat, rape- seed, and winter barley. Average N2O emission from arable soils in the state of Saxony across all 400 realizations was 1.43 ± 1.25 [kg N / ha] with a median value of 1.05 [kg N / ha]. Using the default IPCC emission factor approach (Tier 1) for direct emissions reveal a higher average N2O emission of 1.51 [kg N / ha] due to fertilizer use. In the regional uncertainty quantification the 20% likelihood range for N2O emissions is 0.79 – 1.37 [kg N / ha] (50% likelihood: 0.46 – 2.05 [kg N / ha]; 90% likelihood: 0.11 – 4.03 [kg N / ha]). Respective quantities were calculated for nitrate leaching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5111  
Permanent link to this record
 

 
Author Houska, T.; Kraft, P.; Liebermann, R.; Klatt, S.; Kraus, D.; Haas, E.; Santabarbara, I.; Kiese, R.; Butterbach-Bahl, K.; Müller, C.; Breuer, L. url  doi
openurl 
  Title Rejecting hydro-biogeochemical model structures by multi-criteria evaluation Type Journal Article
  Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 93 Issue Pages 1-12  
  Keywords  
  Abstract Highlights • New method to investigate biogeochemical model structure performance. • Process based hydrological modelling can improve biogeochemical model predictions. • Modelling efficiency dramatically drops with multiple objectives. Abstract This work presents a novel way for assessing and comparing different hydro-biogeochemical model structures and their performances. We used the LandscapeDNDC modelling framework to set up four models of different complexity, considering two soil-biogeochemical and two hydrological modules. The performance of each model combination was assessed using long-term (8 years) data and applying different thresholds, considering multiple criteria and objective functions. Our results show that each model combination had its strength for particular criteria. However, only 0.01% of all model runs passed the complete rejectionist framework. In contrast, our comparatively applied assessments of single thresholds, as frequently used in other studies, lead to a much higher acceptance rate of 40–70%. Therefore, our study indicates that models can be right for the wrong reasons, i.e., matching GHG emissions while at the same time failing to simulate other criteria such as soil moisture or plant biomass dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4983  
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Yeluripati, J.; Xenia, S.; Nendel, C.; Coucheney, E.; Kuhnert, M.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Kiese, R.; Eckersten, H.; Haas, E.; Cammarano, D.; Kassie, B.; Moriondo, M.; Trombi, G.; Bindi, M.; Biernath, C.; Heinlein, F.; Klein, C.; Priesack, E.; Lewan, E.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Asseng, S.; Siebert, S.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 80 Issue Pages 100-112  
  Keywords Crop model; Stratified random sampling; Simple random sampling; Clustering; Up-scaling; Model comparison; Precision gain; species distribution models; systems simulation; weather data; large-scale; design; soil; optimization; growth; apsim; autocorrelation  
  Abstract We compared the precision of simple random sampling (SimRS) and seven types of stratified random sampling (StrRS) schemes in estimating regional mean of water-limited yields for two crops (winter wheat and silage maize) that were simulated by fourteen crop models. We found that the precision gains of StrRS varied considerably across stratification methods and crop models. Precision gains for compact geographical stratification were positive, stable and consistent across crop models. Stratification with soil water holding capacity had very high precision gains for twelve models, but resulted in negative gains for two models. Increasing the sample size monotonously decreased the sampling errors for all the sampling schemes. We conclude that compact geographical stratification can modestly but consistently improve the precision in estimating regional mean yields. Using the most influential environmental variable for stratification can notably improve the sampling precision, especially when the sensitivity behavior of a crop model is known.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4724  
Permanent link to this record
 

 
Author Zhang, W.; Liu, C.; Zheng, X.; Zhou, Z.; Cui, F.; Zhu, B.; Haas, E.; Klatt, S.; Butterbach-Bahl, K.; Kiese, R. url  doi
openurl 
  Title Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 140 Issue Pages 1-10  
  Keywords Model ensemble; Straw incorporation; Irrigation; Fertilization; Calcareous soil; North China Plain; process-oriented model; soil organic-matter; biogeochemical model; cropping system; N2O emissions; forest soils; microbial-growth; rainfall events; calcareous soil  
  Abstract The DNDC, LandscapeDNDC and IAP-N-GAS models have been designed to simulate the carbon and nitrogen processes of terrestrial ecosystems. Until now, a comparison of these models using simultaneous observations has not been reported, although such a comparison is essential for further model development and application. This study aimed to evaluate the performance of the models, delineate the strengths and limitations of each model for simulating soil nitrous oxide (N2O) and nitric oxide (NO) emissions, and explore short-comings of these models that may require reconsideration. We conducted comparisons among the models using simultaneous observations of both gases and relevant variables from the winter wheat-summer maize rotation system at three field sites with calcareous soils. Simulations of N2O and NO emissions by the three models agreed well with annual observations, but not with daily observations. All models failed to correctly simulate soil moisture, which could explain some of the incorrect daily fluxes of N2O and NO, especially for intensive fluxes during the growing season. Multi-model ensembles are promising approaches to better simulate daily gas emissions. IAP-N-GAS underestimated the priming effect of straw incorporation on N2O and NO emissions, but better results were obtained with DNDC95 and LandscapeDNDC. LandscapeDNDC and IAP-N-GAS need to improve the simulation of irrigation water allocation and residue decomposition processes, respectively, and together to distinguish different irrigation methods as DNDC95 does. All three models overestimated the emissions of the nitrogenous gases for high nitrogen fertilizer (>430 kg N ha(-1) yr(-1)) addition treatments, and therefore, future research should focus more on the simulation of the limitation of soil dissolvable organic carbon on denitrification in calcareous soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4685  
Permanent link to this record
 

 
Author Kim, Y.; Berger, S.; Kettering, J.; Tenhunen, J.; Haas, E.; Kiese, R. url  doi
openurl 
  Title Simulation of N2O emissions and nitrate leaching from plastic mulch radish cultivation with LandscapeDNDC Type Journal Article
  Year 2014 Publication Ecological Research Abbreviated Journal Ecol. Res.  
  Volume 29 Issue 3 Pages 441-454  
  Keywords biogeochemical modeling; landscapedndc; N2O; nitrate leaching; plastic mulch; nitrous-oxide emissions; semiarid loess plateau; biogeochemical model; soil-erosion; no emissions; forest soils; dndc model; film mulch; china; field  
  Abstract Radish is one of the major dry field crops in Asia commonly grown with plastic mulch and high rates of N fertilization, and potentially harming the environment due to N2O emissions and nitrate leaching. Despite the widespread use of plastic mulch, biogeochemical models so far do not yet consider impacts of mulch on soil environmental conditions and biogeochemistry. In this study, we adapted and successfully tested the LandscapeDNDC model against field data by simulating crop growth, C and N turnover and associated N2O emissions as well as nitrate leaching for radish cultivation with plastic mulch and in conjunction with different rates of N fertilization (465-765 kg N ha(-1) year(-1)). Due to the sandy soil texture and monsoon climate, nitrate leaching with rates up to 350 kg N ha(-1) year(-1) was the dominant reason for overall low nitrogen use efficiency (32-43 %). Direct or indirect N2O emissions (calculated from simulated nitrate leaching rates and IPCC EFind = 0.0075) ranged between 2 and 3 kg N ha(-1) year(-1), thus contributing an equal amount to total field emissions of about 5 kg N ha(-1) year(-1). Based on our results, emission factors for direct N2O emissions ranged between 0.004 and 0.005. These values are only half of the IPCC default value (0.01), demonstrating the need of biogeochemical models for developing site and/or region specific EFs. Simulation results also revealed that changes in agricultural management by applying the fertilizer only to the rows would be an efficient mitigation strategy, effectively decreasing field nitrate leaching and N2O emissions by 50-60 %.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0912-3814 1440-1703 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4528  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: