toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Klatt, S.; Haas, E.; Hoffmann, H.; Zhao, G.; Van Bussel, L.G.J.; Enders, A.; Gaiser, T.; Ewert, F.; Teixeira, E.; Kiese, R.; Doro, L.; Specka, X.; Nendel, C.; Kersebaum, K.-C.; Sosa, C.; Lewan, E.; Eckersten, H.; Gebbert, S.; Dechow, R.; Grosz, B.; Bach, M.; Yeluripati, J.; Tao, F.; Constantin, J.; Raynal, H.; Wallach, D.; Kuhnert, M. openurl 
  Title (up) Responses of soil N2O emissions and nitrate leaching on climate input data aggregation: a biogeochemistry model ensemble study Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title CropM International Symposium and Workshop  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CropM International Symposium and Workshop, 2014-02-10 to 2014-02-12, Oslo, Norway  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5042  
Permanent link to this record
 

 
Author Klatt, S.; Haas, E.; Kiese, R. url  openurl
  Title (up) Responses of soil N2O emissions and nitrate leaching on climate input data aggregation: a biogeochemistry model ensemble study Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Models are increasingly used to estimate greenhouse gas emissions at site to regional and national scales and are outlined as the most advanced methodology for national emission reporting in the framework of UNFCCC. Process-based models incorporate the major processes of the carbon and nitrogen cycle and are thus thought to be widely applicable at various spatial and temporal scales. The definition of the spatial scale is determined by the objectives. GHG emission reporting requests spatially and temporally aggregated information whereas for the assessment of mitigation options on hot spots and hot moments of emissions a high spatial simulation resolution is required. In addition, other input data also determine the simulation scale. Low resolution simulations needs less effort in computation and data management, but important details could be lost during the process of data aggregation associated with high uncertainties of the simulation results. This study presents the aggregation effects of climate input data on the simulations of soil N2O emissions and nitrate leaching by comparing different biogeochemistry models. Using process-based models (DailyDayCent, LandscapeDNDC, Stics, Mode, Coup, Epic), we simulated a 30-year cropping system for two crops (winter wheat and maize monocultures) under water- and nutrient-limited conditions based on a 1 km resolution climate dataset. We aggregated the climate data to resolutions of 10, 25, 50, and 100 km and repeated the simulations on these spatial scales. We calculated the N2O emissions as well as the nitrate leaching on all scales. Results will be presented and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5123  
Permanent link to this record
 

 
Author Hoffmann, H.; Gang, Z.; Van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Casellas, E.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Klatt, S.; Edwin, H.; Wang, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F. openurl 
  Title (up) Sensitivity of crop models to spatial aggregation of soil and climate data Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Annual conference of the German/Austrian Agronomical Society & Max-Eyth-Society IS -  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5041  
Permanent link to this record
 

 
Author Kim, Y.; Berger, S.; Kettering, J.; Tenhunen, J.; Haas, E.; Kiese, R. url  doi
openurl 
  Title (up) Simulation of N2O emissions and nitrate leaching from plastic mulch radish cultivation with LandscapeDNDC Type Journal Article
  Year 2014 Publication Ecological Research Abbreviated Journal Ecol. Res.  
  Volume 29 Issue 3 Pages 441-454  
  Keywords biogeochemical modeling; landscapedndc; N2O; nitrate leaching; plastic mulch; nitrous-oxide emissions; semiarid loess plateau; biogeochemical model; soil-erosion; no emissions; forest soils; dndc model; film mulch; china; field  
  Abstract Radish is one of the major dry field crops in Asia commonly grown with plastic mulch and high rates of N fertilization, and potentially harming the environment due to N2O emissions and nitrate leaching. Despite the widespread use of plastic mulch, biogeochemical models so far do not yet consider impacts of mulch on soil environmental conditions and biogeochemistry. In this study, we adapted and successfully tested the LandscapeDNDC model against field data by simulating crop growth, C and N turnover and associated N2O emissions as well as nitrate leaching for radish cultivation with plastic mulch and in conjunction with different rates of N fertilization (465-765 kg N ha(-1) year(-1)). Due to the sandy soil texture and monsoon climate, nitrate leaching with rates up to 350 kg N ha(-1) year(-1) was the dominant reason for overall low nitrogen use efficiency (32-43 %). Direct or indirect N2O emissions (calculated from simulated nitrate leaching rates and IPCC EFind = 0.0075) ranged between 2 and 3 kg N ha(-1) year(-1), thus contributing an equal amount to total field emissions of about 5 kg N ha(-1) year(-1). Based on our results, emission factors for direct N2O emissions ranged between 0.004 and 0.005. These values are only half of the IPCC default value (0.01), demonstrating the need of biogeochemical models for developing site and/or region specific EFs. Simulation results also revealed that changes in agricultural management by applying the fertilizer only to the rows would be an efficient mitigation strategy, effectively decreasing field nitrate leaching and N2O emissions by 50-60 %.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0912-3814 1440-1703 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4528  
Permanent link to this record
 

 
Author Haas, E.; Klatt, S.; Kiese, R.; Butterbach-Bahl, K.; Kraft, P.; Breuer, L. url  openurl
  Title (up) Simulation of the the landscape scale nitrogen cycling and redistribution with the coupled hydrology biogeochemistry model CMF-LandscapeDNDC Type Conference Article
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium poster  
  Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4904  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: