|   | 
Details
   web
Records
Author Yin, X.; Kersebaum, K.-C.; Beaudoin, N.; Constantin, J.; Chen, F.; Louarn, G.; Manevski, K.; Hoffmann, M.; Kollas, C.; Armas-Herrera, C.M.; Baby, S.; Bindi, M.; Dibari, C.; Ferchaud, F.; Ferrise, R.; de Cortazar-Atauri, I.G.; Launay, M.; Mary, B.; Moriondo, M.; Öztürk, I.; Ruget, F.; Sharif, B.; Wachter-Ripoche, D.; Olesen, J.E.
Title Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models Type (up) Journal Article
Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume Issue Pages 107863
Keywords multi-model ensemble; crop rotations; catch crops; N cycling; N export
Abstract Modelling N transformations within cropping systems is crucial for N management optimization in order to increase N use efficiency and reduce N losses. Such modelling remains challenging because of the complexity of N cycling in soil–plant systems. In the current study, the uncertainties of six widely used process-based models (PBMs), including APSIM, CROPSYST, DAISY, FASSET, HERMES and STICS, were tested in simulating different N managements (catch crops (CC) and different N fertilizer rates) in 12-year rotations in Western Europe. Winter wheat, sugar beet and pea were the main crops, and radish was the main CC in the tested systems. Our results showed that PBMs simulated yield, aboveground biomass, N export and N uptake well with low RMSE values, except for sugar beet, which was generally less well parameterized. Moreover, PBMs provided more accurate crop simulations (i.e. N export and N uptake) compared to simulations of soil (N mineralization and soil mineral N (SMN)) and environmental variables (N leaching). The use of multi-model ensemble mean or median of four PBMs significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15% for yield, aboveground biomass, N export and N uptake. Multi-model ensemble also significantly reduced the MAPE for net N mineralization and annual N leaching to around 15%, while it was larger than 20% for SMN. Generally, PBMs well simulated the CC effects on N fluxes, i.e. increasing N mineralization and reducing N leaching in both short-term and long-term, and all PBMs correctly predicted the effects of the reduced N rate on all measured variables in the study. The uncertainties of multi-model ensemble for N mineralization, SMN and N leaching were larger, mainly because these variables are influenced by plant-soil interactions and subject to cumulative long-term effects in crop rotations, which makes them more difficult to simulate. Large differences existed between individual PBMs due to the differences in formalisms for describing N processes in soil–plant systems, the skills of modelers and the model calibration level. In addition, the model performance also depended on the simulated variables, for instance, HERMES and FASSET performed better for yield and crop biomass, APSIM, DAISY and STICS performed better for N export and N uptake, STICS provided best simulation for SMN and N leaching among the six individual PBMs in the study, but all PBMs met difficulties to well predict either average or variance of soil N mineralization. Our results showed that better calibration for soil N variables is needed to improve model predictions of N cycling in order to optimize N management in crop rotations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium article
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5235
Permanent link to this record
 

 
Author Kersebaum, K.; C,
Title Results of uncalibrated model runs available (ROTATIONEFFECTS) Type (up) Report
Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages D-C1.5
Keywords
Abstract The study ROTATIONEFFECT aims to compare the output of different models simulating field data sets with multi-year crop rotations including different treatments. Data sets for 5 locations in Europe were distributed to 19 interested modeller groups comprising a total of 201 crop growth seasons. In a first step only minimal information for calibration were provided to the modellers. In total 14 modelling teams sent their “uncalibrated” results as single-year calculations and/or calculations of rotation depending on the capability of the model. 7-10 models were capable to run the rotations as continuous runs. Up to 12 models provided single year simulations of at least one crop. Comparing results of models which provided both single year and continuous runs, show a little lower root mean square error for the continuous rotations runs. Cereal crop yields were generally better simulated than tuber/beet yields. Additionally, the models’ response to various treatments (irrigation/rainfed, nitrogen level, CO2 level, residue management/ tillage, catch crops) were compared to observed differences. First indicators of model performance have been developed and presented at international conferences. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2230
Permanent link to this record
 

 
Author Kersebaum, K.; C
Title Model intercomparison for calibrated models Type (up) Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 4 Issue Pages D-C1.6
Keywords
Abstract The study ROTATIONEFFECT aims to compare the output of different models simulating field data sets with multi-year crop rotations including different treatments.Within the first Step (1a2a) data sets (comprising a total of 301 crop growth seasons) for 5 locations in Europe were distributed to 15 interested modeller groups.For this step only minimal information for calibration were provided to the modellers. In total 15 modelling teams sent their “uncalibrated” results as single-year calculations and/or continuous calculations of rotation depending on the capability of the model. Results have been evaluated and the paper submitted (European Journal of Agronomy).Now, within the 2nd step (1b2b) modellers were provided with more information on the crop for the calibration of models. Again, results of calibrated runs were collected.6 models were capable to run the rotations as continuous runs and another set of 6 models provided single year simulations.A first overview of the improvement of predictions due to calibration has been produced. Result files have been uploaded to the web platform for CropM results at Aarhus University (Work package C2 – data management). No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2213
Permanent link to this record
 

 
Author Sharif, B.; Mankowski, D.; Kersebaum, K.C.; Trnka, M.; Schelde, K.; Olsesen, J.E.
Title Empirical analysis on crop-weather relationships Type (up) Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C2.5
Keywords
Abstract There have been several studies, where process-based crop models are developed, used and compared in order to project crop production and corresponding model uncertainties under climate change. Despite many advances in this field, there are some correlations between climate variables and crop growth, such as pest and diseases, that is often absent in process-based models. Such relationships can be simulated using empirical models. In this study, several statistical techniques were applied on winter oilseed rape data collected in some European countries. The empirical models were then used to predict yield of winter oilseed rape in the field experiments during more than 20 years, up to 2013. Results suggest that newly developed regression techniques such as shrinkage methods work well both in yield projections and finding the influential climatic variables. Many of regression techniques agree in terms of yield prediction; however, choice of significant climate variables is rather sensitive to the choice of regression technique. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2092
Permanent link to this record
 

 
Author Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E.
Title Description of the compiled experimental data available in the MACSUR CropM database Type (up) Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C2.1
Keywords
Abstract The input data necessary for crop model simulations and data for their calibration/validation (and thus requirements for observations and measurements in suitable experiments) have been collected through out the project together with data for additional analysis of abiotic factors influencing yields. A list of possible dataset was collated in the first year of project however very few of the existing datasets were found usable for the crop model simulation as they fell short of the requirements defined in the part 2.3. However database has been populated as planned with the results of the ongoing MACSUR studies and will serve in the same way for the MACSUR 2 duration. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2090
Permanent link to this record