|   | 
Details
   web
Records
Author Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Roetter, R.P.; Semeradova, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; Hlavinka, P.; Meitner, J.; Balek, J.; Havlik, P.; Buntgen, U.
Title Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas Type Journal Article
Year 2019 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 5 Issue 9 Pages eaau2406
Keywords climate-change impacts; sub-saharan africa; atmospheric co2; crop; yields; drought; agriculture; variability; irrigation; adaptation; carbon
Abstract Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near- simultaneous droughts across key world wheat-producing areas.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2375-2548 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5227
Permanent link to this record
 

 
Author Mirschel, W.; Barkusky, D.; Hufnagel, J.; Kersebaum, K.C.; Nendel, C.; Laacke, L.; Luzi, K.; Rosner, G.
Title Coherent multi-variable field data set of an intensive cropping system for agro-ecosystem modelling from Müncheberg, Germany Type Journal Article
Year 2016 Publication Open Data Journal for Agricultural Research Abbreviated Journal Open Data J. Agric. Res.
Volume 2 Issue 1 Pages 1-10
Keywords
Abstract A six-year (1993-1998) multivariable data set for a four-plot intensive crop rotation (sugar beet – winter wheat – winter barley – winter rye – catch crop) located at Leibniz Centre for Agricultural Landscape Research (ZALF) Experimental Station, Müncheberg, Germany, is documented in detail. The experiment targets crop response to water supply on sandy soils (Eutric Cambisol), applying rain-fed and irrigated treatments. Weather as well as soil and crop processes were intensively monitored and management actions were consistently recorded. The data set contains coherent data for soil (water, nitrogen contents), crop (ontogenesis, plant, tiller and ear numbers, above-ground and root biomasses, yield, carbon and nitrogen content in biomass and their fractions, sugar content in beet), weather (all standard meteorological variables) and management (soil tillage, sowing, fertilisation, irrigation, harvest). In addition, observation methods are briefly described. The data set is available via the Open Research Data Portal at ZALF Müncheberg and is published under doi:10.4228/ZALF.1992.271. The data set was used for model intercomparison within the crop modelling part (CropM) of the international FACCE MACSUR project.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2352-6378 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4762
Permanent link to this record
 

 
Author Graef, F.; Sieber, S.; Mutabazi, K.; Asch, F.; Biesalski, H.K.; Bitegeko, J.; Bokelmann, W.; Bruentrup, M.; Dietrich, O.; Elly, N.; Fasse, A.; Germer, J.U.; Grote, U.; Herrmann, L.; Herrmann, R.; Hoffmann, H.; Kahimba, F.C.; Kaufmann, B.; Kersebaum, K.-C.; Kilembe, C.; Kimaro, A.; Kinabo, J.; König, B.; König, H.; Lana, M.; Levy, C.; Lyimo-Macha, J.; Makoko, B.; Mazoko, G.; Mbaga, S.H.; Mbogoro, W.; Milling, H.; Mtambo, K.; Mueller, J.; Mueller, C.; Mueller, K.; Nkonja, E.; Reif, C.; Ringler, C.; Ruvuga, S.; Schaefer, M.; Sikira, A.; Silayo, V.; Stahr, K.; Swai, E.; Tumbo, S.; Uckert, G.
Title Framework for participatory food security research in rural food value chains Type Journal Article
Year 2014 Publication Global Food Security Abbreviated Journal Global Food Security
Volume 3 Issue 1 Pages 8-15
Keywords food security; food value chain; action research; tanzania; research framework
Abstract Enhancing food security for poor and vulnerable people requires adapting rural food systems to various driving factors. Food security-related research should apply participatory action research that considers the entire food value chain to ensure sustained success. This article presents a research framework that focusses on determining, prioritising, testing, adapting and disseminating food securing upgrading strategies across the multiple components of rural food value chains. These include natural resources, Food production, processing, markets, consumption and waste management. Scientists and policy makers jointly use tools developed for assessing potentials for enhancing regional food security at multiple spatial and temporal scales. The research is being conducted in Tanzania as a case study for Sub-Saharan countries and is done in close collaboration with local, regional and national stakeholders, encompassing all activities across all different food sectors. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2211-9124 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4523
Permanent link to this record
 

 
Author Kersebaum, K.; Kroes, J.; Gobin, A.; Takáč, J.; Hlavinka, P.; Trnka, M.; Ventrella, D.; Giglio, L.; Ferrise, R.; Moriondo, M.; Dalla Marta, A.; Luo, Q.; Eitzinger, J.; Mirschel, W.; Weigel, H.-J.; Manderscheid, R.; Hoffmann, M.; Nejedlik, P.; Iqbal, M.; Hösch, J.
Title Assessing uncertainties of water footprints using an ensemble of crop growth models on winter wheat Type Journal Article
Year 2016 Publication Water Abbreviated Journal Water
Volume 8 Issue 12 Pages 571
Keywords
Abstract Crop productivity and water consumption form the basis to calculate the water footprint (WF) of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the simulation of crop yields adding further uncertainty. To assess the uncertainty of model based assessments of WF, an ensemble of crop models was applied to data from five field experiments across Europe. Only limited data were provided for a rough calibration, which corresponds to a typical situation for regional assessments, where data availability is limited. Up to eight models were applied for wheat. The coefficient of variation for the simulated actual evapotranspiration between models was in the range of 13%–19%, which was higher than the inter-annual variability. Simulated yields showed a higher variability between models in the range of 17%–39%. Models responded differently to elevated CO2 in a FACE (Free-Air Carbon Dioxide Enrichment) experiment, especially regarding the reduction of water consumption. The variability of calculated WF between models was in the range of 15%–49%. Yield predictions contributed more to this variance than the estimation of water consumption. Transpiration accounts on average for 51%–68% of the total actual evapotranspiration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-4441 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4987
Permanent link to this record
 

 
Author Gobin, A.; Kersebaum, K.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takáč, J.; Kroes, J.; Ventrella, D.; Marta, A.; Deelstra, J.; Lalić, B.; Nejedlik, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Şaylan, L.; Stričevic, R.; Vučetić, V.; Zoumides, C.
Title Variability in the Water Footprint of Arable Crop Production across European Regions Type Journal Article
Year 2017 Publication Water Abbreviated Journal Water
Volume 9 Issue 2 Pages 93
Keywords
Abstract Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R² = 0.64–0.80; d = 0.91–0.95). The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield (c̅v̅ = 45%) and to a lesser extent to variability in crop water use (c̅v̅ = 21%). The WF variability between countries (c̅v̅ = 14%) is lower than the variability between seasons (c̅v̅ = 22%) and between crops (c̅v̅ = 46%). Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-4441 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4988
Permanent link to this record