|   | 
Details
   web
Records
Author (up) Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.
Title Uncertainty in simulating wheat yields under climate change Type Journal Article
Year 2013 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 3 Issue 9 Pages 827-832
Keywords crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts
Abstract Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur, IPCC-AR5 Approved no
Call Number MA @ admin @ Serial 4599
Permanent link to this record
 

 
Author (up) Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; Basso, B.; Biernath, C.; Boogaard, H.; Conijn, S.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Gayler, S.; Grassini, P.; Hatfield, J.; Hoek, S.; Izaurralde, C.; Jongschaap, R.; Kemanian, A.R.; Kersebaum, K.C.; Kim, S.-H.; Kumar, N.S.; Makowski, D.; Müller, C.; Nendel, C.; Priesack, E.; Pravia, M.V.; Sau, F.; Shcherbak, I.; Tao, F.; Teixeira, E.; Timlin, D.; Waha, K.
Title How do various maize crop models vary in their responses to climate change factors Type Journal Article
Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 20 Issue 7 Pages 2301-2320
Keywords Carbon Dioxide/metabolism; *Climate Change; Crops, Agricultural/growth & development/metabolism; Geography; Models, Biological; Temperature; Water/*metabolism; Zea mays/*growth & development/*metabolism; AgMIP; [Co2]; climate; maize; model intercomparison; simulation; uncertainty
Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 μmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4510
Permanent link to this record
 

 
Author (up) Boote, K.J.; Porter, C.; Jones, J.W.; Thorburn, P.J.; Kersebaum, K.C.; Hoogenboom, G.; White, J.W.; Hatfield, J.L.
Title Sentinel site data for crop model improvement—definition and characterization Type Book Chapter
Year 2016 Publication Improving Modeling Tools to Assess Climate Change Effects on Crop Response Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Crop models are increasingly being used to assess the impacts of future climate change on production and food security. High quality, site-specific data on weather, soils, management, and cultivar are needed for those model applications. Also important is that model development, evaluation, improvement, and calibration require additional high quality, site-specific measurements on crop yield, growth, phenology, and ancillary traits. We review the evolution of minimum data set requirements for agroecosystem modeling and then describe the characteristics and ranking of sentinel site data needed for crop model improvement, calibration, and application. We in the Agricultural Model Intercomparison and Improvement Project (AgMIP), propose to rank sentinel site data sets as platinum, gold, silver, and copper, based on the degree of true site-specific measurement of weather, soils, management, crop yield, as well as the quality, comprehensiveness, quantity, accuracy, and value. For example, to be ranked platinum, the weather and soil characterization must be measured on-site, and all management inputs must be known. Dataset ranking will be lower for weather measured off-site or soil traits estimated from soil mapping. Ranking also depends on the intended purposes for data use. If the purpose is to improve a crop model for response to water or N, then additional observations are necessary, such as initial soil water, initial soil inorganic N, and plant N uptake during the growing season to be ranked platinum. Rankings are enhanced by presence of multiple treatments and sites. Examples of platinum-, gold-, and silver-quality data sets for model improvement and calibration uses are illustrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Hatfield, J.L.; Fleisher, D.
Language Summary Language Original Title
Series Editor Series Title Advances in Agricultural Systems Modeling Abbreviated Series Title
Series Volume 7 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4980
Permanent link to this record
 

 
Author (up) Boote, K.J.; Porter, C.; Jones, J.W.; Thorburn, P.J.; Kersebaum, K.C.; Hoogenboom, G.; White, J.W.; Hatfield, J.L.
Title Sentinel site data for crop model improvement – definition and characterization Type Conference Article
Year 2015 Publication Abbreviated Journal
Volume Advances in Agricultural Systems Modeling (7) Issue Pages
Keywords CropM;
Abstract
Address
Corporate Author Thesis
Publisher ASA, CSSA, and SSSA Place of Publication Madison, WI Editor Hatfield, J.L.; Fleisher, D.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2338
Permanent link to this record
 

 
Author (up) Cammarano, D.; Rötter, R.P.; Asseng, S.; Ewert, F.; Wallach, D.; Martre, P.; Hatfield, J.L.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Kersebaum, K.C.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Heng, L.; Hooker, J.E.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Priesack, E.; Ripoche, D.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; White, J.W.; Wolf, J.
Title Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2 Type Journal Article
Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 198 Issue Pages 80-92
Keywords Multi-model simulation; Transpiration efficiency; Water use; Uncertainty; Sensitivity
Abstract Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50% of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4786
Permanent link to this record