|   | 
Details
   web
Records
Author Yin, X.G.; Kersebaum, K.C.; Kollas, C.; Manevski, K.; Baby, S.; Beaudoin, N.; Ozturk, I.; Gaiser, T.; Wu, L.H.; Hoffmann, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; de Cortazar-Atauri, I.G.; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Nende, C.; Pacholskin, A.; Palosuo, T.; Ripoche-Wachter, D.; Rotter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Weigel, H.J.; Olesen, J.E.; Yin, X.; Kersebaum, K.C.; Kollas, C.; Manevski, K.; Baby, S.; Beaudoin, N.; Ozturk, I.; Gaiser, T.; Wu, L.; Hoffmann, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; de Cortazar-Atauri, I.G.; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Nende, C.; Pacholskin, A.; Palosuo, T.; Ripoche-Wachter, D.; Roetter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Weigel, H.-J.; Olesen, J.E.
Title (up) Performance of process-based models for simulation of grain N in crop rotations across Europe Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 154 Issue Pages 63-77
Keywords Calibration, Crop model, Crop rotation, Grain N content, Model evaluation, Model initialization; Climate-Change; Winter-Wheat; Nitrogen-Fertilization; Agroecosystem; Models; Multimodel Ensembles; Yield Response; Use Efficiency; Soil-Moisture; Oilseed Rape; Elevated Co2
Abstract The accurate estimation of crop grain nitrogen (N; N in grain yield) is crucial for optimizing agricultural N management, especially in crop rotations. In the present study, 12 process-based models were applied to simulate the grain N of i) seven crops in rotations, ii) across various pedo-climatic and agro-management conditions in Europe, under both continuous simulation and single year simulation, and for iv) two calibration levels, namely minimal and detailed calibration. Generally, the results showed that the accuracy of the simulations in predicting grain N increased under detailed calibration. The models performed better in predicting the grain N of winter wheat (Triticum aestivum L.), winter barley (Hordewn vulgare L.) and spring barley (Hordeum vulgare L.) compared to spring oat (Avena saliva L.), winter rye (Secale cereale L.), pea (Piswn sativum L.) and winter oilseed rape (Brassica napus L.). These differences are linked to the intensity of parameterization with better parameterized crops showing lower prediction errors. The model performance was influenced by N fertilization and irrigation treatments, and a majority of the predictions were more accurate under low N and rainfed treatments. Moreover, the multi-model mean provided better predictions of grain N compared to any individual model. In regard to the Individual models, DAISY, FASSET, HERMES, MONICA and STICS are suitable for predicting grain N of the main crops in typical European crop rotations, which all performed well in both continuous simulation and single year simulation. Our results show that both the model initialization and the cover crop effects in crop rotations should be considered in order to achieve good performance of continuous simulation. Furthermore, the choice of either continuous simulation or single year simulation should be guided by the simulation objectives (e.g. grain yield, grain N content or N dynamics), the crop sequence (inclusion of legumes) and treatments (rate and type of N fertilizer) included in crop rotations and the model formalism.
Address 2017-06-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4963
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Doro, L.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Rötter, R.; Wallach, D.; Gaiser, T.; Ewert, F.
Title (up) Responses of crop’s water use efficiency to weather data aggregation: a crop model ensemble study Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title CropM International Symposium and Workshop
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CropM International Symposium and Workshop, 2014-02-10 to 2014-02-12, Oslo, Norway
Notes Approved no
Call Number MA @ admin @ Serial 5043
Permanent link to this record
 

 
Author Klatt, S.; Haas, E.; Hoffmann, H.; Zhao, G.; Van Bussel, L.G.J.; Enders, A.; Gaiser, T.; Ewert, F.; Teixeira, E.; Kiese, R.; Doro, L.; Specka, X.; Nendel, C.; Kersebaum, K.-C.; Sosa, C.; Lewan, E.; Eckersten, H.; Gebbert, S.; Dechow, R.; Grosz, B.; Bach, M.; Yeluripati, J.; Tao, F.; Constantin, J.; Raynal, H.; Wallach, D.; Kuhnert, M.
Title (up) Responses of soil N2O emissions and nitrate leaching on climate input data aggregation: a biogeochemistry model ensemble study Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title CropM International Symposium and Workshop
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CropM International Symposium and Workshop, 2014-02-10 to 2014-02-12, Oslo, Norway
Notes Approved no
Call Number MA @ admin @ Serial 5042
Permanent link to this record
 

 
Author Haas, E.; R. Kiese; Klatt, S.; Hoffmann, H.; Zhao, G.; Ewert, F.; J. Constantin; Raynal, H.; Coucheney, E.; Lewan, E.; Sosa, C.; Dechow, R.; Grosz, B.; Eckersten, H.; Gaiser, T.; Kuhnert, M.; Smith, P.; Kersebaum, K.C.; C. Nendel; Specka, X.; Wang, E.; Zhao, Z.; Weihermüller, L.
Title (up) Responses of soil nitrous oxide emissions and nitrate leaching on climate, soil and management input data aggregation: a biogeochemistry model ensemble study Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin (Germany) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium poster
Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany
Notes Approved no
Call Number MA @ admin @ Serial 4907
Permanent link to this record
 

 
Author Hoffmann, H.; Ewert, F.
Title (up) Review on scaling methods for crop models Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C3.1
Keywords
Abstract Agricultural systems cover a range of organisational levels and spatial and temporal scales. To capture multi-scale problems of sustainable management in agricultural systems, Integrated assessment modelling (IAM) including crop models is often applied which require methods of scale changes (scaling methods). Scaling methods, however, are often not well understood and are therefore sources of uncertainty in models. The present report summarizes scaling methods as developed and applied in recent years (e.g. in SEAMLESS-IF and MACSUR) in a classification scheme based on Ewert et al. (2011, 2006). Scale changes refer to different spatial, temporal and functional scales with changes in extent, resolution, and coverage rate. Accordingly, there are a number of different scaling methods that can include data extrapolation, aggregation and disaggregation, sampling and nested simulation. Comparative quantitative analysis of alternative scaling methods are currently under way and covered by other reports in MACSUR and several publications (e.g. Ewert et al., 2014; Hoffmann et al., 2015; Zhao et al., 2015). The following classification of scaling methods assists to structure such analysis. Improved integration of scaling methods in IAM may help to overcome modelling limitations that are related to high data demand, complexity of models and scaling methods considered. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2094
Permanent link to this record