|   | 
Details
   web
Records
Author Kersebaum, K.C.; Kollas, C.; Bindi, M.; Palosuo, T.; Wu, L.; Sharif, B.; Öztürk, I.; Trnka, M.; Hlavinka, P.; Nendel, C.; Müller, C.; Waha, K.; Armas-Herrera, C.; Olesen, J.E.; Eitzinger, J.; Roggero, P.P.; Conradt, T.; Martre, P.; Ferrise, R.; Moriondo, M.; Ruiz-Ramos, M.; Ventrella, D.; Rötter, R.P.; Wegehenkel, M.; Eckersten, H.; Lorite Torres, I.J.; Hernandez, C.G.; Launay, M.; De Wit, A.; Hoffmann, H.; Weigel, H.-J.; Manderscheid, R.; Beaudoin, N.; Constantin, J.; Garcia de Cortazar-Atauri, I.; Mary, B.; Ripoche, D.; Ruget, F.
Title (up) Model inter-comparison on crop rotation effects – an intermediate report Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Data of diverse crop rotations from five locations across Europe were distributed to modelers to investigate the capability of models to handle complex crop rotations and management interactions. Crop rotations comprise various main crops (winter/spring wheat, winter/spring barley, rye, oat, maize, sugar beet, oil seed rape and potatoes) plus several catch crops. The experimental setup of the datasets included treatments such as modified soils, crops exchanged within the rotations, irrigation/rainfed, nitrogen fertilization, residue management, tillage and atmospheric CO2 concentration. 19 modeling teams registered to model either the whole rotation or single crops. Models which are capable to run the whole rotation should provide transient as well as single year simulations with a reset of initial conditions. In the first step only initial soil conditions (water and soil mineral N) of the first year and key phenological stages were provided to the modelers. For calibration, crop yields and biomass were provided for selected years but not for all seasons. In total the combination of treatments and seasons results in 301 years of simulation. Results were analyzed to evaluate the effect of transient simulation versus single-year simulation regarding crop yield, biomass, water and nitrogen balance components. Model results will be evaluated crop-specifically to identify crops with highest uncertainty and potential for model improvement. Full data will be provided to modelers for model-improvement and results will provide insights into model capabilities to reproduce treatments and crops. Further, the question of error propagation along the transient simulation of crop rotations will be addressed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5104
Permanent link to this record
 

 
Author Kersebaum, C.; Kollas, C.; Bindi, M.; Nendel, C.; Ferrise, R.; Moriondo, M.; Olesen, J.E.; Sharif, B.; Öztürk, I.; Hoffmann, H.; Launay, M.; Ripoche, D.; Ruget, F.; Bertuzzi, P.; Cortazar, I.G.D.; Beaudoin, N.; Armas-Herrera, C.; Mary, B.; Müller, C.; Waha, K.; Ventrella, D.; Palosuo, T.; Rötter, R.; Trnka, M.; Hlavinka, P.; Wu, L.; Wegehenkel, M.; Mirschel, W.; Conradt, T.; Wechsung, F.; Weigel, H.-J.; Manderscheid, R.; Eitzinger, J.
Title (up) Modelling complex crop rotations and management across sites in Europe with an ensemble of models Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ASA-CSSA-SSSA Int. Annual Meeting, Long Beach, CA, 2-5 November 2014, 2014-11-02 to 2014-11-05
Notes Approved no
Call Number MA @ admin @ Serial 2526
Permanent link to this record
 

 
Author Hlavinka, P.; Olesen, J.E.; Kersebaum, K.-C.; Trnka, M.; Pohankova, E.; Stella, T.; Ferrise, R.; Moriondo, M.; Hoogenbom, G.; Shelia, V.; Nendel, C.; Wimmerová, M.; Topaj, A.; Medvedev, S.; Ventrella, D.; Ruiz-Ramos, M.; Rodríguez Sánchez, A.; Takáč, J.; Patil, R.H.; Öztürk, I.; Hoffmann, M.; Gobin, A.; Rötter, R.P.
Title (up) Modelling long term effects of cropping and managements systems on soil organic matter, C/N dynamics and crop growth Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.3-D
Keywords
Abstract While simulation of cropping systems over a few years might reflect well the short term effects of management and cultivation, long term effects on soil properties and their consequences for crop growth and matter fluxes are not captured. Especially the effect on soil carbon sequestration/depletion is addressed by this task. Simulations of an ensemble of crop models are performed as transient runs over a period of 120 year using observed weather from three stations in Czech Republic (1961-2010) and transient long time climate change scenarios (2011-2080) from five GCM of the CMIP5 ensemble to assess the effect of different cropping and management systems on carbon sequestration, matter fluxes and crop production in an integrative way. Two cropping systems are regarded comprising two times winter wheat, silage maize, spring barley and oilseed rape. Crop rotations differ regarding their organic input from crop residues, nitrogen fertilization and implementation of catch crops. Models are applied for two soil types with different water holding capacity. Cultivation and nutrient management is adapted using management rules related to weather and soil conditions. Data of phenology and crop yield from the region of the regarded crops were provided to calibrate the models for crops of the rotations. Twelve models were calibrated in this first step. For the transient long term runs results of four models were submitted so far. Outputs are crop yields, nitrogen uptake, soil water and mineral nitrogen contents, as well as water and nitrogen fluxes to the atmosphere and groundwater. Changes in the carbon stocks and the consequences for nitrogen mineralisation, N fertilization and emissions also considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes XC Approved no
Call Number MA @ admin @ Serial 4976
Permanent link to this record
 

 
Author Hlavinka, P.; Trnka, M.; Kersebaum, K.C.; Cermák, P.; Pohanková, E.; Orság, M.; Pokorný, E.; Fischer, M.; Brtnický, M.; Žalud, Z.
Title (up) Modelling of yields and soil nitrogen dynamics for crop rotations by HERMES under different climate and soil conditions in the Czech Republic Type Journal Article
Year 2014 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 152 Issue 02 Pages 188-204
Keywords winter oilseed rape; spring barley; central-europe; growth; simulation; wheat; adaptation; impact; water; agriculture
Abstract The crop growth model HERMES was used to model crop rotation cycles at 12 experimental sites in the Czech Republic. A wide range of crops (spring and winter barley, winter wheat, maize, potatoes, sugar beet, winter rape, oats, alfalfa and grass), cultivated between 1981 and 2009 under various soil and climatic conditions, were included. The model was able to estimate the yields of field crop rotations at a reasonable level, with an index of agreement (IA) ranging from 0.82 to 0.96 for the calibration database (the median coefficient of determination (R-2) was 0.71), while IA for verification varied from 0.62 to 0.93 (median R-2 was 0.78). Grass yields were also estimated at a reasonable level of accuracy. The estimates were less accurate for the above-ground biomass at harvest (the medians for IA were 0.76 and 0.72 for calibration and verification, respectively, and analogous medians of R-2 were 0.50 and 0.49). The soil mineral nitrogen (N) content under the field crops was simulated with good precision, with the IA ranging from 0.49 to 0.74 for calibration and from 0.43 to 0.68 for verification. Generally, the soil mineral N was underestimated, and more accurate results were achieved at locations with intensive fertilization. Simulated yields, soil N, water and organic carbon (C) contents were compared with long-term field measurements at Ne. mc. ice, located within the fertile Moravian lowland. At this station, all of the observed parameters were reproduced with a reasonable level of accuracy. In the case of the organic C content, HERMES reproduced a decrease ranging from c. 85 to 77 tonnes (t)/ha (for the 0-0.3 m soil layer) between the years 1980 and 2007. In spite of its relatively simple approach and restricted input data, HERMES was proven to be robust across various conditions, which is a precondition for its future use for both theoretical and practical purposes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 1469-5146 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4626
Permanent link to this record
 

 
Author Trnka, M.; Hlavinka, P.; Wimmerová, M.; Pohanková, E.; Rötter, R.; Olesen, J.E.; Kersebaum, K.-C.; Semenov, M.
Title (up) Paper on model responses to selected adverse weather conditions Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.2-D
Keywords
Abstract Based on the Trnka et al. (2015) study that indicated that heat and drought will be the most important stress factors for most of the European what area the further effort focused on these two extremes. The crop model HERMES has been tested for its ability to replicate correctly drought stress, heat stress and combination of both stresses. While data on the drought stress were available for both field and growth chambers, heat stress and its combination with heat stress was available only for the growth chambers. The modified version of the HERMES crop model was developed by Dr. Kersebaum and is being currently prepared for the journal paper publication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4954
Permanent link to this record