toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Havlik, P. openurl 
  Title Climate change impacts on agricultural sector: A global perspective Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords TradeM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference TradeM Stakeholder Workshop Vienna, 2014-03-24 to 2014-03-24  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2467  
Permanent link to this record
 

 
Author Frank, S.; Witzke, P.; Zimmermann, A.; Havlik, P.; Ciaian, P. openurl 
  Title Climate Change Impacts on European Agriculture: A Multi Model Perspective Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords TradeM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 14th EAAE Congress, Ljubljana (Slovenia), 2014-08-26 to 2014-08-29  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2443  
Permanent link to this record
 

 
Author Havlik, P.; Leclere, D.; Valin, H.; Herrero, M.; Schmid, E.; Obersteiner, M. url  openurl
  Title Effects of climate change on feed availability and the implications for the livestock sector Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Global mean surface temperature is projected to rise by 0.4-2.6°C until 2050, and the contrast in precipitations between wet and dry regions and wet and dry seasons will also increase according to the IPCC 5th Assessment Report (2013). The climate change will impact livestock in many ways going from heat stress through livestock diseases to feed quality and availability (Thornton et al., 2009). Recently, projected climate change impacts on crop and grassland productivity became available with high spatial resolution at global scale through the AgMIP and ISI-MIP projects. The objective of this paper is to investigate how climate change impacts on crops and grassland will influence livestock production globally and its distribution across regions. This analysis is carried out using the global partial equilibrium agricultural and forestry sector model GLOBIOM (Havlík et al., 2013). The model represents agricultural production at a spatial resolution going down to 5 x 5 minutes of arc. Crop and grassland productivities are estimated by means of biophysical process based models (EPIC and CENTURY) at this resolution for current and future climate. Livestock representation follows a simplified version of the Seré and Steinfeld (1996) production system classification. This approach recognizes differences in feed base and productivities between grazing and mixed crop-livestock production systems across different agro-ecological zones (arid, humid, temperate/highlands). Our study highlights that the differential impacts of climate change on crop and grassland productivity will influence the relative competitiveness of different livestock production systems. Maintaining livestock production in some regions will depend on their capacity to adapt. Institutional and physical infrastructure will be needed to facilitate these transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5076  
Permanent link to this record
 

 
Author Ahammad, H.; Heyhoe, E.; Nelson, G.; Sands, R.; Fujimori, S.; Hasegawa, T.; van der Mensbrugghe, D.; Blanc, E.; Havlik, P.; Valin, H.; Kyle, P.; d’Croz, D.M.; Meijl, H.V.; Schmitz, C.; Lotze-Campen, H.; von Lampe, M.; Tabeau, A. openurl 
  Title The Role of International Trade under a Changing Climate: Insights from global economic modelling Type Book Chapter
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 293-312  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Rome Editor Elbehri, A.  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Climate Change and Food Systems Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5001  
Permanent link to this record
 

 
Author Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; Hasegawa, T.; Kyle, P.; Obersteiner, M.; Tabeau, A.; Takahashi, K.; Valin, H.; Waldhoff, S.; Weindl, I.; Wise, M.; Kriegler, E.; Lotze-Campen, H.; Fricko, O.; Riahi, K.; Vuuren, D.P. van url  doi
openurl 
  Title Land-use futures in the shared socio-economic pathways Type Journal Article
  Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 42 Issue Pages 331-345  
  Keywords Scenarios; Land use; Emissions; Mitigation; Food prices; Integrated assessment; SSP  
  Abstract • Narratives for the Shared Socio-Economic Pathways (SSPs) focusing on the land sector are presented. • Integrated Assessment Models have been applied for the SSPs to assess potential future developments for land use, greenhouse gas emissions, food provision and prices. • Model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures. • SSP-based land use pathways aim at supporting future climate research, climate impact analysis, biodiversity research and sustainability science. Abstract In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5006  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: