toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rötter, R.P.; Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Basso, B.; Ruane, A.; Boote, K.J.; Thorburn, P.; Brisson, N.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Pertuzzi; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.-C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J. url  openurl
  Title Quantifying Uncertainties in Modeling Crop Water Use under Climate Change Type Conference Article
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Impacts World 2013, International Conference on Climate Change Effects, Potsdam, Germany, 2013-05-27 to 2013-05-30  
  Notes (up) Approved no  
  Call Number MA @ admin @ Serial 2767  
Permanent link to this record
 

 
Author Nendel, C.; Ewert, F.; Rötter, R.P.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Asseng, S.; Ruane, A.C.; Banse, M.; Tiffin, R.; Brouwer, F.; Sinabell, F.; Scollan, N.; Meijs, J.; Angulo, C.; Antle, J.M.; Baigorria, G.; Basso, B.; Bindi, M.; Boote, K.J.; Gaiser, T.; Janssen, S.; Kersebaum, K.C.; Nelson, G.; Olesen, J.E.; Palosuo, T.; Porter, C.H.; Porter, J.R.; Rivington, M.; Semenov, M.; Stewart, D.; Thorburn, P.; Trnka, M.; van Ittersum, M.K.; Verhagen, J.; Wallach, D.; Winter, J.M. url  openurl
  Title Addressing challenges and uncertainties for, the use of agro-ecosystem models to, assess climate change impact and food security across scales Type Conference Article
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Climate Change and Regional Responses Conference, Dresden, 2013-05-27 to 2013-05-27  
  Notes (up) Approved no  
  Call Number MA @ admin @ Serial 2679  
Permanent link to this record
 

 
Author Boote, K.J.; Porter, C.; Jones, J.W.; Thorburn, P.J.; Kersebaum, K.C.; Hoogenboom, G.; White, J.W.; Hatfield, J.L. doi  openurl
  Title Sentinel site data for crop model improvement – definition and characterization Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Advances in Agricultural Systems Modeling (7) Issue Pages  
  Keywords CropM;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher ASA, CSSA, and SSSA Place of Publication Madison, WI Editor Hatfield, J.L.; Fleisher, D.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number MA @ admin @ Serial 2338  
Permanent link to this record
 

 
Author Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; Basso, B.; Biernath, C.; Boogaard, H.; Conijn, S.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Gayler, S.; Grassini, P.; Hatfield, J.; Hoek, S.; Izaurralde, C.; Jongschaap, R.; Kemanian, A.R.; Kersebaum, K.C.; Kim, S.-H.; Kumar, N.S.; Makowski, D.; Müller, C.; Nendel, C.; Priesack, E.; Pravia, M.V.; Sau, F.; Shcherbak, I.; Tao, F.; Teixeira, E.; Timlin, D.; Waha, K. doi  openurl
  Title How do various maize crop models vary in their responses to climate change factors Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 7 Pages 2301-2320  
  Keywords Carbon Dioxide/metabolism; *Climate Change; Crops, Agricultural/growth & development/metabolism; Geography; Models, Biological; Temperature; Water/*metabolism; Zea mays/*growth & development/*metabolism; AgMIP; [Co2]; climate; maize; model intercomparison; simulation; uncertainty  
  Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 μmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4510  
Permanent link to this record
 

 
Author Boote, K.J.; Porter, C.; Jones, J.W.; Thorburn, P.J.; Kersebaum, K.C.; Hoogenboom, G.; White, J.W.; Hatfield, J.L. doi  openurl
  Title Sentinel site data for crop model improvement—definition and characterization Type Book Chapter
  Year 2016 Publication Improving Modeling Tools to Assess Climate Change Effects on Crop Response Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Crop models are increasingly being used to assess the impacts of future climate change on production and food security. High quality, site-specific data on weather, soils, management, and cultivar are needed for those model applications. Also important is that model development, evaluation, improvement, and calibration require additional high quality, site-specific measurements on crop yield, growth, phenology, and ancillary traits. We review the evolution of minimum data set requirements for agroecosystem modeling and then describe the characteristics and ranking of sentinel site data needed for crop model improvement, calibration, and application. We in the Agricultural Model Intercomparison and Improvement Project (AgMIP), propose to rank sentinel site data sets as platinum, gold, silver, and copper, based on the degree of true site-specific measurement of weather, soils, management, crop yield, as well as the quality, comprehensiveness, quantity, accuracy, and value. For example, to be ranked platinum, the weather and soil characterization must be measured on-site, and all management inputs must be known. Dataset ranking will be lower for weather measured off-site or soil traits estimated from soil mapping. Ranking also depends on the intended purposes for data use. If the purpose is to improve a crop model for response to water or N, then additional observations are necessary, such as initial soil water, initial soil inorganic N, and plant N uptake during the growing season to be ranked platinum. Rankings are enhanced by presence of multiple treatments and sites. Examples of platinum-, gold-, and silver-quality data sets for model improvement and calibration uses are illustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Hatfield, J.L.; Fleisher, D.  
  Language Summary Language Original Title  
  Series Editor Series Title Advances in Agricultural Systems Modeling Abbreviated Series Title  
  Series Volume 7 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4980  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: