|   | 
Details
   web
Records
Author Höglind, M.; the partners of LiveM task L1.3
Title Bringing together grassland and farm scale modelling. Part 1. Characterizing grasslands in farm scale modelling Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages L1.3-D
Keywords
Abstract This report provides an overview of how grasslands are represented in six different farmscale  models represented in MACSUR. A survey was conducted, followed by a workshop in  which modellers discussed the results of the survey, and identified research challenges and  knowledge gaps. The workshop was attended by grassland as well as livestock specialists.  The investigated models differed largely with respect to how grasslands were represented,  e.g. as regards weather and management factors accounted for, spatial and temporal  resolution, and output variables. All models had grassland modules that simulate DM yield  and herbage N content (or crude protein (CP) content = N content x 6.25). Many models  also simulate P content, whereas only one simulate K content. About half of the model  simulate herbage energy value and/or herbage fibre content and fibre and/or dry matter  digestibility. Critical input data required from grassland models to simulate ruminant  productivity and GHG emissions at farm scale was identified by the workshop participants.  The different types of input data required were ranked in order of importance as regards  their influence on important system outputs. For simulation of ruminant productivity and  GHG emissions, herbage DM yield was ranked as the most important input variable from  grassland models, followed by CP content together with at least one variable describing  herbage fibre characteristics. These findings suggest that work on improving the ability of  the current grassland models with respect to simulation of fibre/energy should be  prioritized in farm-scale modelling aiming at quantifying livestock production and GHG  emissions under different management regimes and climate conditions. More work is also needed on model evaluation, a task that has not been prioritized yet for some models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) LiveM Approved no
Call Number MA @ admin @ Serial 4957
Permanent link to this record
 

 
Author Kipling, R.P.; Virkajärvi, P.; Breitsameter, L.; Curnel, Y.; De Swaef, T.; Gustavsson, A.-M.; Hennart, S.; Höglind, M.; Järvenranta, K.; Minet, J.; Nendel, C.; Persson, T.; Picon-Cochard, C.; Rolinski, S.; Sandars, D.L.; Scollan, N.D.; Sebek, L.; Seddaiu, G.; Topp, C.F.E.; Twardy, S.; Van Middelkoop, J.; Wu, L.; Bellocchi, G.
Title Key challenges and priorities for modelling European grasslands under climate change Type Journal Article
Year 2016 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment
Volume 566-567 Issue Pages 851-864
Keywords Climate change; Grasslands; Horizon scanning; Livestock production; Models; Research agenda
Abstract Grassland-based ruminant production systems are integral to sustainable food production in Europe, converting plant materials indigestible to humans into nutritious food, while providing a range of environmental and cultural benefits. Climate change poses significant challenges for such systems, their productivity and the wider benefits they supply. In this context, grassland models have an important role in predicting and understanding the impacts of climate change on grassland systems, and assessing the efficacy of potential adaptation and mitigation strategies. In order to identify the key challenges for European grassland modelling under climate change, modellers and researchers from across Europe were consulted via workshop and questionnaire. Participants identified fifteen challenges and considered the current state of modelling and priorities for future research in relation to each. A review of literature was undertaken to corroborate and enrich the information provided during the horizon scanning activities. Challenges were in four categories relating to: 1) the direct and indirect effects of climate change on the sward 2) climate change effects on grassland systems outputs 3) mediation of climate change impacts by site, system and management and 4) cross-cutting methodological issues. While research priorities differed between challenges, an underlying theme was the need for accessible, shared inventories of models, approaches and data, as a resource for stakeholders and to stimulate new research. Developing grassland models to effectively support efforts to tackle climate change impacts, while increasing productivity and enhancing ecosystem services, will require engagement with stakeholders and policy-makers, as well as modellers and experimental researchers across many disciplines. The challenges and priorities identified are intended to be a resource 1) for grassland modellers and experimental researchers, to stimulate the development of new research directions and collaborative opportunities, and 2) for policy-makers involved in shaping the research agenda for European grassland modelling under climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes (up) LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4761
Permanent link to this record
 

 
Author Virkajärvi, P.; Korhonen, P.; Bellocchi, G.; Curnel, Y.; Wu, L.; Jégo, G.; Persson, T.; Höglind, M.; Van Oijen, M.; Gustavsson, A.-M.; Kipling, R.P.
Title Modelling responses of forages to climate change with a focus on nutritive value Type Journal Article
Year 2016 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences
Volume 7 Issue 03 Pages 227-228
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-4700 ISBN Medium
Area Expedition Conference
Notes (up) LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4876
Permanent link to this record
 

 
Author Kässi, P.; Känkänen, H.; Niskanen, O.; Lehtonen, H.; Höglind, M.
Title Farm level approach to manage grass yield variation under climate change in Finland and north-western Russia Type Journal Article
Year 2015 Publication Biosystems Engineering Abbreviated Journal Biosystems Engineering
Volume 140 Issue Pages 11-22
Keywords silage grass; risk management; dairy farms; buffer storage; agricultural economics; grassland modelling; dairy-cows; impact; security; timothy; harvest; future; growth; norway; europe; time
Abstract Cattle feeding in Northern Europe is based on grass silage, but grass growth is highly dependent on weather conditions. If ensuring sufficient silage availability in every situation is prioritised, the lowest expected yield level determines the cultivated area in farmers’ decision-making. One way to manage the variation in grass yield is to increase grass production and silage storage capacity so that they exceed the annual consumption at the farm. The cost of risk management in the current and the projected future climate was calculated taking into account grassland yield and yield variability for three study areas under current and mid-21st century climate conditions. The dataset on simulated future grass yields used as input for the risk management calculations were taken from a previously published simulation study. Strategies investigated included using up to 60% more silage grass area than needed in a year with average grass yields, and storing silage for up to 6 months more than consumed in a year (buffer storage). According to the results, utilising an excess silage grass area of 20% and a silage buffer storage capacity of 6 months were the most economic ways of managing drought risk in both the baseline climate and the projected climate of 2046-2065. It was found that the silage yield risk due to drought is likely to decrease in all studied locations, but the drought risk and costs implied still remain significant. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1537-5110 ISBN Medium Article
Area Expedition Conference
Notes (up) TradeM Approved no
Call Number MA @ admin @ Serial 4671
Permanent link to this record