|   | 
Details
   web
Records
Author Höglind, M.; the partners of LiveM task L1.3
Title Bringing together grassland and farm scale modelling. Part 1. Characterizing grasslands in farm scale modelling Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages L1.3-D
Keywords
Abstract This report provides an overview of how grasslands are represented in six different farmscale  models represented in MACSUR. A survey was conducted, followed by a workshop in  which modellers discussed the results of the survey, and identified research challenges and  knowledge gaps. The workshop was attended by grassland as well as livestock specialists.  The investigated models differed largely with respect to how grasslands were represented,  e.g. as regards weather and management factors accounted for, spatial and temporal  resolution, and output variables. All models had grassland modules that simulate DM yield  and herbage N content (or crude protein (CP) content = N content x 6.25). Many models  also simulate P content, whereas only one simulate K content. About half of the model  simulate herbage energy value and/or herbage fibre content and fibre and/or dry matter  digestibility. Critical input data required from grassland models to simulate ruminant  productivity and GHG emissions at farm scale was identified by the workshop participants.  The different types of input data required were ranked in order of importance as regards  their influence on important system outputs. For simulation of ruminant productivity and  GHG emissions, herbage DM yield was ranked as the most important input variable from  grassland models, followed by CP content together with at least one variable describing  herbage fibre characteristics. These findings suggest that work on improving the ability of  the current grassland models with respect to simulation of fibre/energy should be  prioritized in farm-scale modelling aiming at quantifying livestock production and GHG  emissions under different management regimes and climate conditions. More work is also needed on model evaluation, a task that has not been prioritized yet for some models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4957
Permanent link to this record
 

 
Author Korhonen, P.; Palosuo, T.; Höglind, M.; Persson, T.; van Oijen, M.; Jego, G.; Virkajärvi, P.; Belanger, G.; Gustavsson, A.M.
Title Intercomparison of models for simulating timothy yield in Northern countries. The multiple roles of grassland in the European bioeconomy Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Trondheim, Norway Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title General Meeting of the European Grassland Federation
Series Volume 26 Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference General Meeting of the European Grassland Federation, 2016-09-04 to 2016-09-08, Trondheim, Norway 26:
Notes Approved no
Call Number MA @ admin @ Serial 5168
Permanent link to this record
 

 
Author Özkan Gülzari, Ş.; Åby, B.A.; Persson, T.; Höglind, M.; Mittenzwei, K.
Title Combining models to estimate the impacts of future climate scenarios on feed supply, greenhouse gas emissions and economic performance on dairy farms in Norway Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 157 Issue Pages 157-169
Keywords Climate change; Dairy farming; Dry matter yield; Economics; Greenhouse gas emission; Modelling
Abstract • This study combines crop, livestock and economic models.

• Models interaction is through use of relevant input and output variables.

• Future climate change will result in increased grass and wheat dry matter yields.

• Changes in grass, wheat and milk yields in future reduce farm emissions intensity.

• Changes in future dry matter yields and emissions lead to increased profitability.

There is a scientific consensus that the future climate change will affect grass and crop dry matter (DM) yields. Such yield changes may entail alterations to farm management practices to fulfill the feed requirements and reduce the farm greenhouse gas (GHG) emissions from dairy farms. While a large number of studies have focused on the impacts of projected climate change on a single farm output (e.g. GHG emissions or economic performance), several attempts have been made to combine bio-economic systems models with GHG accounting frameworks. In this study, we aimed to determine the physical impacts of future climate scenarios on grass and wheat DM yields, and demonstrate the effects such changes in future feed supply may have on farm GHG emissions and decision-making processes. For this purpose, we combined four models: BASGRA and CSM-CERES-Wheat models for simulating forage grass DM and wheat DM grain yields respectively; HolosNor for estimating the farm GHG emissions; and JORDMOD for calculating the impacts of changes in the climate and management on land use and farm economics. Four locations, with varying climate and soil conditions were included in the study: south-east Norway, south-west Norway, central Norway and northern Norway. Simulations were carried out for baseline (1961–1990) and future (2046–2065) climate conditions (projections based on two global climate models and the Special Report on Emissions Scenarios (SRES) A1B GHG emission scenario), and for production conditions with and without a milk quota. The GHG emissions intensities (kilogram carbon dioxide equivalent: kgCO2e emissions per kg fat and protein corrected milk: FPCM) varied between 0.8 kg and 1.23 kg CO2e (kg FPCM)− 1, with the lowest and highest emissions found in central Norway and south-east Norway, respectively. Emission intensities were generally lower under future compared to baseline conditions due mainly to higher future milk yields and to some extent to higher crop yields. The median seasonal above-ground timothy grass yield varied between 11,000 kg and 16,000 kg DM ha− 1 and was higher in all projected future climate conditions than in the baseline. The spring wheat grain DM yields simulated for the same weather conditions within each climate projection varied between 2200 kg and 6800 kg DM ha− 1. Similarly, the farm profitability as expressed by total national land rents varied between 1900 million Norwegian krone (NOK) for median yields under baseline climate conditions up to 3900 million NOK for median yield under future projected climate conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language phase 2 Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes CropM, LiveM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5172
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M.
Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
Year 2016 Publication Euphytica Abbreviated Journal Euphytica
Volume 207 Issue 3 Pages 627-643
Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance
Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0014-2336 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4820
Permanent link to this record
 

 
Author Kipling, R.P.; Virkajärvi, P.; Breitsameter, L.; Curnel, Y.; De Swaef, T.; Gustavsson, A.-M.; Hennart, S.; Höglind, M.; Järvenranta, K.; Minet, J.; Nendel, C.; Persson, T.; Picon-Cochard, C.; Rolinski, S.; Sandars, D.L.; Scollan, N.D.; Sebek, L.; Seddaiu, G.; Topp, C.F.E.; Twardy, S.; Van Middelkoop, J.; Wu, L.; Bellocchi, G.
Title Key challenges and priorities for modelling European grasslands under climate change Type Journal Article
Year 2016 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment
Volume 566-567 Issue Pages 851-864
Keywords Climate change; Grasslands; Horizon scanning; Livestock production; Models; Research agenda
Abstract Grassland-based ruminant production systems are integral to sustainable food production in Europe, converting plant materials indigestible to humans into nutritious food, while providing a range of environmental and cultural benefits. Climate change poses significant challenges for such systems, their productivity and the wider benefits they supply. In this context, grassland models have an important role in predicting and understanding the impacts of climate change on grassland systems, and assessing the efficacy of potential adaptation and mitigation strategies. In order to identify the key challenges for European grassland modelling under climate change, modellers and researchers from across Europe were consulted via workshop and questionnaire. Participants identified fifteen challenges and considered the current state of modelling and priorities for future research in relation to each. A review of literature was undertaken to corroborate and enrich the information provided during the horizon scanning activities. Challenges were in four categories relating to: 1) the direct and indirect effects of climate change on the sward 2) climate change effects on grassland systems outputs 3) mediation of climate change impacts by site, system and management and 4) cross-cutting methodological issues. While research priorities differed between challenges, an underlying theme was the need for accessible, shared inventories of models, approaches and data, as a resource for stakeholders and to stimulate new research. Developing grassland models to effectively support efforts to tackle climate change impacts, while increasing productivity and enhancing ecosystem services, will require engagement with stakeholders and policy-makers, as well as modellers and experimental researchers across many disciplines. The challenges and priorities identified are intended to be a resource 1) for grassland modellers and experimental researchers, to stimulate the development of new research directions and collaborative opportunities, and 2) for policy-makers involved in shaping the research agenda for European grassland modelling under climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4761
Permanent link to this record