toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hoffmann, M.P.; Haakana, M.; Asseng, S.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Fronzek, S.; Ewert, F.; Gaiser, T.; Kassie, B.T.; Paff, K.; Rezaei, E.E.; Rodríguez, A.; Semenov, M.; Srivastava, A.K.; Stratonovitch, P.; Tao, F.; Chen, Y.; Rötter, R.P. url  doi
openurl 
  Title How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume Issue Pages in press  
  Keywords  
  Abstract Highlights • The larger simulated attainable yield for a specific crop season, the larger the yield gap. • Average size of the yield gap is not affected by the inter-annual variability of attainable yield. • Technology levels (resource input and accessibility) determine average yield gap. • To reduce yield gaps in rainfed environments, farmers need to improve season-specific crop management. Abstract Provision of food security in the face of increasing global food demand requires narrowing of the gap between actual farmer’s yield and maximum attainable yield. So far, assessments of yield gaps have focused on average yield over 5–10 years, but yield gaps can vary substantially between crop seasons. In this study we hypothesized that climate-induced inter-annual yield variability and associated risk is a major barrier for farmers to invest, i.e. increase inputs to narrow the yield gap. We evaluated the importance of inter-annual attainable yield variability for the magnitude of the yield gap by utilizing data for wheat and maize at ten sites representing some major food production systems and a large range of climate and soil conditions across the world. Yield gaps were derived from the difference of simulated attainable yields and regional recorded farmer yields for 1981 to 2010. The size of the yield gap did not correlate with the amplitude of attainable yield variability at a site, but was rather associated with the level of available resources such as labor, fertilizer and plant protection inputs. For the sites in Africa, recorded yield reached only 20% of the attainable yield, while for European, Asian and North American sites it was 56–84%. Most sites showed that the higher the attainable yield of a specific season the larger was the yield gap. This significant relationship indicated that farmers were not able to take advantage of favorable seasonal weather conditions. To reduce yield gaps in the different environments, reliable seasonal weather forecasts would be required to allow farmers to manage each seasonal potential, i.e. overcoming season-specific yield limitations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium (up)  
  Area CropM Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4985  
Permanent link to this record
 

 
Author Hjelkrem, A.-G.R.; Höglind, M.; van Oijen, M.; Schellberg, J.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title Sensitivity analysis and Bayesian calibration for testing robustness of the BASGRA model in different environments Type Journal Article
  Year 2017 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 359 Issue Pages 80-91  
  Keywords Metropolis-hasting; Morris method; Reducing complexity; Robustness  
  Abstract Highlights • The parameters to be fixed were consistent across sites. • Model calibration must be performed separately for each specific case. • Possible to reduce model parameters from 66 to 45. • Strong model reductions must be avoided. • The error term for the training data were characterised by timing (phase shift). Abstract Proper parameterisation and quantification of model uncertainty are two essential tasks in improvement and assessment of model performance. Bayesian calibration is a method that combines both tasks by quantifying probability distributions for model parameters and outputs. However, the method is rarely applied to complex models because of its high computational demand when used with high-dimensional parameter spaces. We therefore combined Bayesian calibration with sensitivity analysis, using the screening method by Morris (1991), in order to reduce model complexity by fixing parameters to which model output was only weakly sensitive to a nominal value. Further, the robustness of the model with respect to reduction in the number of free parameters were examined according to model discrepancy and output uncertainty. The process-based grassland model BASGRA was examined in the present study on two sites in Norway and in Germany, for two grass species (Phleum pratense and Arrhenatherum elatius). According to this study, a reduction of free model parameters from 66 to 45 was possible. The sensitivity analysis showed that the parameters to be fixed were consistent across sites (which differed in climate and soil conditions), while model calibration had to be performed separately for each combination of site and species. The output uncertainty decreased slightly, but still covered the field observations of aboveground biomass. Considering the training data, the mean square error for both the 66 and the 45 parameter model was dominated by errors in timing (phase shift), whereas no general pattern was found in errors when using the validation data. Stronger model reduction should be avoided, as the error term increased and output uncertainty was underestimated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium (up)  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5010  
Permanent link to this record
 

 
Author Grosz, B.; Dechow, R.; Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Kuhnert, M.; Yeluripati, J.; Kiese, R.; Haas, E.; Klatt, S.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Vanuytrecht, E.; Tao, F.; Rötter, R.; Cammarano, D.; Asseng, S.; Weihermüller, L.; Siebert, S.; Gaiser, T.; Ewert, F openurl 
  Title The implication of input data aggregation on upscaling of soil organic carbon changes Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title MACSUR Science Conference  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference MACSUR Science Conference, 2015-04-08 to 2015-04-10, Reading, United Kingdom  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5038  
Permanent link to this record
 

 
Author Hoffmann, H.; Gang, Z.; Van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Casellas, E.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Klatt, S.; Edwin, H.; Wang, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F. openurl 
  Title Sensitivity of crop models to spatial aggregation of soil and climate data Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference Annual conference of the German/Austrian Agronomical Society & Max-Eyth-Society IS -  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5041  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Hoehn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Roetter, R.P. doi  openurl
  Title Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment Type Journal Article
  Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 260-274  
  Keywords Wheat adaptation; Sensitivity analysis; Crop model ensemble; Rainfed, Mediterranean cropping system; AOCK concept; Iberian Peninsula; Simulation-Model; Change Impacts; Crop; Uncertainty; Ensemble; Europe; Yield; Productivity; Irrigation  
  Abstract Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T.),[CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium (up)  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5184  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: