|
Records |
Links |
|
Author |
Hoffmann, H.; Zhao, G.; Asseng, S.A.U.-,; Bindi, M.; Cammarano, D.; Constantin, J.; Coucheney, E.; Dechow, R.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Haas, E.; Kassie, B.; Kersebaum, K.C.; Kiese, R.; Klatt, S.; Kuhnert, M.; Lewan, E.; Moriondo, M.; Nendel, C.; Raynal, H.; Roggero, P.P.; Rötter, R.; Siebert, S.; Sosa, C.; Specka, X.; Tao, F.; Teixeira, E.; Trombi, G.; Yeluripati, J.; Vanuytrecht, E.; Wallach, D.; Wang, E.; Weihermüller, L.; Zhao, Z.; Ewert, F. |
|
|
Title |
Analysing data aggregation effects on large-scale yield simulations |
Type |
Conference Article |
|
Year |
2016 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Berlin (Germany) |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
4923 |
|
Permanent link to this record |
|
|
|
|
Author |
Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Sosa, C.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Grosz, B.; Dechow, R.; Kuhnert, M.; Yeluripati, J.; Kiese, R.; Haas, E.; Klatt, S.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Vanuytrecht, E.; Tao, F.; Rötter, R.; Cammarano, D.; Asseng, S.; Weihermüller, L.; Siebert, S.; Gaiser, T.; Ewert, F. |
|
|
Title |
Effects of soil and climate input data aggregation on modelling regional crop yields |
Type |
Conference Article |
|
Year |
2015 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
MACSUR Science Conference |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MACSUR Science Conference, 2015-04-08 to 2015-04-10, Reading, United Kingdom |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
5037 |
|
Permanent link to this record |
|
|
|
|
Author |
Hoffmann, H.; Zhao, G.; Van Bussel, L.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Roggero, P.P.; Rötter, R.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Wang, E.; Zhao, Z.; Ewert, F. |
|
|
Title |
Effects of climate input data aggregation on modelling regional crop yields |
Type |
Conference Article |
|
Year |
2014 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Crop models can be sensitive to climate input data aggregation and this response may differ among models. This should be considered when applying field-scale models for assessment of climate change impacts on larger spatial scales or when coupling models across scales. In order to evaluate these effects systematically, an ensemble of ten crop models was run with climate input data on different spatial aggregations ranging from 1, 10, 25, 50 and 100 km horizontal resolution for the state of North Rhine-Westphalia, Germany. Models were minimally calibrated to typical sowing and harvest dates, and crop yields observed in the region, subsequently simulating potential, water-limited and nitrogen-limited production of winter wheat and silage maize for 1982-2011. Outputs were analysed for 19 variables (yield, evapotranspiration, soil organic carbon, etc.). In this study the sensitivity of the individual models and the model ensemble in response to input data aggregation is assessed for crop yield. Results show that the mean yield of the region calculated from climate time series of 1 km horizontal resolution changes only little when using climate input data of higher aggregation levels for most models. However, yield frequency distributions change with aggregation, resembling observed data better with increasing resolution. With few exceptions, these results apply to the two crops and three production situations (potential, water-, nitrogen-limited) and across models including the model ensemble, regardless of differences among models in simulated yield levels and spatial yield patterns. Results of this study improve the confidence of using crop models at varying scales. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
FACCE MACSUR Mid-term Scientific Conference |
|
|
Series Volume |
3(S) Sassari, Italy |
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
5077 |
|
Permanent link to this record |
|
|
|
|
Author |
Hoffmann, H.; Zhao, G.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Wang, E.; Nendel, C.; Kersebaum, K.C.; Haas, E.; Kiese, R.; Klatt, S.; Eckersten, H.; Vanuytrecht, E.; Kuhnert, M.; Lewan, E.; Rötter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F. |
|
|
Title |
Variability of effects of spatial climate data aggregation on regional yield simulation by crop models |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Climate Research |
Abbreviated Journal |
Clim. Res. |
|
|
Volume |
65 |
Issue |
|
Pages |
53-69 |
|
|
Keywords |
spatial aggregation effects; crop simulation model; input data; scaling; variability; yield simulation; model comparison; input data aggregation; systems simulation; nitrogen dynamics; data resolution; n2o emissions; winter-wheat; scale; water; impact; apsim |
|
|
Abstract |
Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0936-577x 1616-1572 |
ISBN |
|
Medium |
Article |
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
CropM, ft_macsur |
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
4694 |
|
Permanent link to this record |
|
|
|
|
Author |
Hoffmann, H.; Zhao, G.; Van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Haas, E.; Wang, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Cammarano, D.; Asseng, S.; Ewert, F. |
|
|
Title |
Influence of climate input data aggregation on simulated yield |
Type |
Conference Article |
|
Year |
2014 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
ESA Congress |
|
|
Series Volume |
13 Debrecen, |
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ESA Congress, 2014-08-25 to 2014-08-29, Debrecen, 13: |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
5039 |
|
Permanent link to this record |