toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fleisher, D.H.; Condori, B.; Quiroz, R.; Alva, A.; Asseng, S.; Barreda, C.; Bindi, M.; Boote, K.J.; Ferrise, R.; Franke, A.C.; Govindakrishnan, P.M.; Harahagazwe, D.; Hoogenboom, G.; Naresh Kumar, S.; Merante, P.; Nendel, C.; Olesen, J.E.; Parker, P.S.; Raes, D.; Raymundo, R.; Ruane, A.C.; Stockle, C.; Supit, I.; Vanuytrecht, E.; Wolf, J.; Woli, P. url  doi
openurl 
  Title (up) A potato model intercomparison across varying climates and productivity levels Type Journal Article
  Year 2017 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 23 Issue 3 Pages 1258-1281  
  Keywords  
  Abstract A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4968  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Hoehn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Roetter, R.P. doi  openurl
  Title (up) Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment Type Journal Article
  Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 260-274  
  Keywords Wheat adaptation; Sensitivity analysis; Crop model ensemble; Rainfed, Mediterranean cropping system; AOCK concept; Iberian Peninsula; Simulation-Model; Change Impacts; Crop; Uncertainty; Ensemble; Europe; Yield; Productivity; Irrigation  
  Abstract Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T.),[CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5184  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Pirttioja, N.; Fronzek, S.; Palosuo, T.; Carter, T.R.; Bindi, M.; Höhn, J.G.; Baranowski, P.; Buis, S.; Cammarano, D.; Claas, N.; Deligios, P.; Havlinka, P.; Hoffmann, H.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Porter, J.; Recio, J.; Ruget, F.; Sanz, A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; Ventrella, D.; de Wit, A.; Rötter, R.P. url  openurl
  Title (up) Adaptation response surfaces from an ensemble of wheat projections under climate change in Europe Type Conference Article
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vienna (Austria) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Geophysical Research Abstracts Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference European GeoSciences Union (EGU), General Assembly 2016, 2016-04-17 to 2016-04-22, Vienna, Austria  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4887  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Tao, F.; Pirttioja, N.; Fronzek, S.; Palosuo, T.; Carter, T.R.; Bindi, M.; Höhn, J.G.; Kersebaum, K.C.; Trnka, M.; Hoffmann, H.; Baranowski, P.; Buis, S.; Cammarano, D.; Deligios, P.; Havlinka, P.; Minet, J.; Montesino, M.; Porter, J.; Recio, J.; Ruget, F.; Sanz, A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Ventrella, D.; Wit, A.D.; Rötter, R.P. url  openurl
  Title (up) An ensemble of projections of wheat adaptation to climate change in europe analyzed with impact response surfaces Type Conference Article
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4924  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J.G.; Jurecka, F.; Kersebaum, H.-C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter, R.P. url  openurl
  Title (up) Applying adaptation response surfaces for managing wheat under perturbed climate and elevated CO2 in a Mediterranean environment Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume Issue Pages C4.4-D  
  Keywords  
  Abstract This study developed Adaptation Response Surfaces and applied them to a study case in North East Spain on winter crops adaptation, using rainfed winter wheat as reference crop.  Crop responses to perturbed temperature, precipitation and CO2 were simulated by an ensemble of crop models. A set of combined changes on cultivars (on vernalisation requirements and phenology) and management (on sowing date and irrigation) were considered as adaptation options and simulated by the crop model ensemble. The discussion focused on two main issues: 1) the recommended adaptation options for different soil types and perturbation levels, and 2) the need of applying our current knowledge (AOCK) when building a crop model ensemble. The study has been published Agricultural Systems (Available online 25 January 2017, https://doi.org/10.1016/j.agsy.2017.01.009 ), and the  text below consists on extracts from that paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4955  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: