|   | 
Details
   web
Records
Author Thornton, P.; Ewert, F.
Title Making the most of climate impacts ensembles (vol 4, pg 77, 2014) – Correction Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue 3 Pages 166-166
Keywords (up)
Abstract
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium Letter
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4817
Permanent link to this record
 

 
Author Webber, H.; Zhao, G.; Britz, W.; deVries, W.; Wolf, J.; Gaiser, T.; Hoffmann, H.; Ewert, F.
Title Specification of nitrogen use in regional climate impact assessment studies Type Conference Article
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Montpellier (France) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 5th International Symposium for Farming Systems Design, Montpellier, France, 2015-09-07 to 2015-09-10, Montpellier
Notes Approved no
Call Number MA @ admin @ Serial 2899
Permanent link to this record
 

 
Author Ewert, F.; al, E.
Title Uncertainties in Scaling-Up Crop Models for Large-Area Climate Change Impact Assessments Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C3.3
Keywords (up)
Abstract Problems related to food security and sustainable development are complex (Ericksenet al., 2009) and require consideration of biophysical, economic, political, and social factors, as well as their interactions, at the level of farms, regions, nations, and globally. While the solution to such societal problems may be largely political, there is a growing recognition of the need for science to provide sound information to decision-makers (Meinke et al., 2009). Achieving this, particularly in light of largely uncertain future climate and socio-economic changes, will necessitate integrated assessment approaches and appropriate integrated assessment modeling (IAM) tools to perform them. Recent (Ewertet al., 2009; van Ittersumet al., 2008) and ongoing (Rosenzweiget al., 2013) studies have tried to advance the integrated use of biophysical and economic models to represent better the complex interactions in agricultural systems that largely determine food supply and sustainable resource use. Nonetheless, the challenges for model integration across disciplines are substantial and range from methodological and technical details to an often still-weak conceptual basis on which to ground model integration (Ewertet al., 2009; Janssenet al., 2011). New generations of integrated assessment models based on well-understood, general relationships that are applicable to different agricultural systems across the world are still to be developed. Initial efforts are underway towards this advancement (Nelsonet al., 2014; Rosenzweiget al., 2013). Together with economic and climate models, crop models constitute an essential model group in IAM for large-area cropping systems climate change impact assessments. However, in addition to challenges associated with model integration, inadequate representation of many crops and crop management systems, as well as a lack of data for model initialization and calibration, limit the integration of crop models with climate and economic models (Ewertet al., 2014). A particular obstacle is the mismatch between the temporal and spatial scale of input/output variables required and delivered by the various models in the IAM model chain. Crop models are typically developed, tested, and calibrated for field-scale application (Booteet al., 2013; see also Part 1, Chapter 4 in this volume) and short time-series limited to one or few seasons. Although crop models are increasingly used for larger areas and longer time-periods (Bondeauet al., 2007; Deryng et al., 2011; Elliottet al., 2014) rigorous evaluation of such applications is pending. Among the different sources of uncertainty related to climate and soil data, model parameters, and structure, the uncertainty from methods used to scale-up crop models has received little attention, though recent evaluations indicate that upscaling of crop models for climate change impact assessment and the resulting errors and uncertainties deserve attention in order to advance crop modeling for climate change assessment (Ewertet al., 2014; R¨ otteret al., 2011). This reality is now reflected in the scientific agendas of new international research projects and programs such as the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweiget al., 2013) and MACSUR (MACSUR, 2014). In this chapter, progress in evaluation of scaling methods with their related uncertainties is reviewed. Specific emphasis is on examining the results of systematic studies recently established in AgMIP and MACSUR. Main features of the respective simulation studies are presented together with preliminary results. Insights from these studies are summarized and conclusions for further work are drawn. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2096
Permanent link to this record
 

 
Author Hoffmann, H.; Ewert, F.
Title Review on scaling methods for crop models Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C3.1
Keywords (up)
Abstract Agricultural systems cover a range of organisational levels and spatial and temporal scales. To capture multi-scale problems of sustainable management in agricultural systems, Integrated assessment modelling (IAM) including crop models is often applied which require methods of scale changes (scaling methods). Scaling methods, however, are often not well understood and are therefore sources of uncertainty in models. The present report summarizes scaling methods as developed and applied in recent years (e.g. in SEAMLESS-IF and MACSUR) in a classification scheme based on Ewert et al. (2011, 2006). Scale changes refer to different spatial, temporal and functional scales with changes in extent, resolution, and coverage rate. Accordingly, there are a number of different scaling methods that can include data extrapolation, aggregation and disaggregation, sampling and nested simulation. Comparative quantitative analysis of alternative scaling methods are currently under way and covered by other reports in MACSUR and several publications (e.g. Ewert et al., 2014; Hoffmann et al., 2015; Zhao et al., 2015). The following classification of scaling methods assists to structure such analysis. Improved integration of scaling methods in IAM may help to overcome modelling limitations that are related to high data demand, complexity of models and scaling methods considered. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2094
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S.
Title Crop modelling for integrated assessment of risk to food production from climate change Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C0.3
Keywords (up)
Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2089
Permanent link to this record