|   | 
Details
   web
Records
Author Ewert, F.; al, E.
Title Uncertainties in Scaling-Up Crop Models for Large-Area Climate Change Impact Assessments Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C3.3
Keywords
Abstract Problems related to food security and sustainable development are complex (Ericksenet al., 2009) and require consideration of biophysical, economic, political, and social factors, as well as their interactions, at the level of farms, regions, nations, and globally. While the solution to such societal problems may be largely political, there is a growing recognition of the need for science to provide sound information to decision-makers (Meinke et al., 2009). Achieving this, particularly in light of largely uncertain future climate and socio-economic changes, will necessitate integrated assessment approaches and appropriate integrated assessment modeling (IAM) tools to perform them. Recent (Ewertet al., 2009; van Ittersumet al., 2008) and ongoing (Rosenzweiget al., 2013) studies have tried to advance the integrated use of biophysical and economic models to represent better the complex interactions in agricultural systems that largely determine food supply and sustainable resource use. Nonetheless, the challenges for model integration across disciplines are substantial and range from methodological and technical details to an often still-weak conceptual basis on which to ground model integration (Ewertet al., 2009; Janssenet al., 2011). New generations of integrated assessment models based on well-understood, general relationships that are applicable to different agricultural systems across the world are still to be developed. Initial efforts are underway towards this advancement (Nelsonet al., 2014; Rosenzweiget al., 2013). Together with economic and climate models, crop models constitute an essential model group in IAM for large-area cropping systems climate change impact assessments. However, in addition to challenges associated with model integration, inadequate representation of many crops and crop management systems, as well as a lack of data for model initialization and calibration, limit the integration of crop models with climate and economic models (Ewertet al., 2014). A particular obstacle is the mismatch between the temporal and spatial scale of input/output variables required and delivered by the various models in the IAM model chain. Crop models are typically developed, tested, and calibrated for field-scale application (Booteet al., 2013; see also Part 1, Chapter 4 in this volume) and short time-series limited to one or few seasons. Although crop models are increasingly used for larger areas and longer time-periods (Bondeauet al., 2007; Deryng et al., 2011; Elliottet al., 2014) rigorous evaluation of such applications is pending. Among the different sources of uncertainty related to climate and soil data, model parameters, and structure, the uncertainty from methods used to scale-up crop models has received little attention, though recent evaluations indicate that upscaling of crop models for climate change impact assessment and the resulting errors and uncertainties deserve attention in order to advance crop modeling for climate change assessment (Ewertet al., 2014; R¨ otteret al., 2011). This reality is now reflected in the scientific agendas of new international research projects and programs such as the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweiget al., 2013) and MACSUR (MACSUR, 2014). In this chapter, progress in evaluation of scaling methods with their related uncertainties is reviewed. Specific emphasis is on examining the results of systematic studies recently established in AgMIP and MACSUR. Main features of the respective simulation studies are presented together with preliminary results. Insights from these studies are summarized and conclusions for further work are drawn. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2096
Permanent link to this record
 

 
Author Hoffmann, H.; Ewert, F.
Title Review on scaling methods for crop models Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C3.1
Keywords
Abstract Agricultural systems cover a range of organisational levels and spatial and temporal scales. To capture multi-scale problems of sustainable management in agricultural systems, Integrated assessment modelling (IAM) including crop models is often applied which require methods of scale changes (scaling methods). Scaling methods, however, are often not well understood and are therefore sources of uncertainty in models. The present report summarizes scaling methods as developed and applied in recent years (e.g. in SEAMLESS-IF and MACSUR) in a classification scheme based on Ewert et al. (2011, 2006). Scale changes refer to different spatial, temporal and functional scales with changes in extent, resolution, and coverage rate. Accordingly, there are a number of different scaling methods that can include data extrapolation, aggregation and disaggregation, sampling and nested simulation. Comparative quantitative analysis of alternative scaling methods are currently under way and covered by other reports in MACSUR and several publications (e.g. Ewert et al., 2014; Hoffmann et al., 2015; Zhao et al., 2015). The following classification of scaling methods assists to structure such analysis. Improved integration of scaling methods in IAM may help to overcome modelling limitations that are related to high data demand, complexity of models and scaling methods considered. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2094
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S.
Title Crop modelling for integrated assessment of risk to food production from climate change Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C0.3
Keywords
Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2089
Permanent link to this record
 

 
Author Köchy, M.; Aberton, M.; Bannink, A.; Banse, M.; Brouwer, F.; Brüser, K.; Ewert, F.; Foyer, C.; Jorgenson, J.S.; Kipling, R.; Meijs, J.; Rötter, R.; Scollan, N.; Sinabell, F.; Tiffin, R.; van den Pol-van Dasselaar, A.
Title MACSUR — Summary of research results, phase 1: 2012-2015 Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-H3.3
Keywords Hub
Abstract MACSUR — Modelling European Agriculture with Climate Change for Food Security — is a  knowledge hub that was formally created in June 2012 as a European scientific network.  The strategic aim of the knowledge hub is to create a coordinated and globally visible  network of European researchers and research groups, with intra- and interdisciplinary  interaction and shared expertise creating synergies for the development of scientific  resources (data, models, methods) to model the impacts of climate change on agriculture  and related issues. This objective encompasses a wide range of political and sociological  aspects, as well as the technical development of modelling capacity through impact  assessments at different scales and assessing uncertainties in model outcomes. We achieve  this through model intercomparisons and model improvements, harmonization and  exchange of data sets, training in the selection and use of models, assessment of benefits  of ensemble modelling, and cross-disciplinary linkages of models and tools. The project  engages with a diverse range of stakeholder groups and to support the development of  resources for capacity building of individuals and countries. Commensurate with this broad  challenge, a network of currently 300 scientists (measured by the number of individuals on  the central e-mail list) from 18 countries evolved from the original set of research groups  selected by FACCE.   In the spirit of creating and maintaining a network for intra- and interdisciplinary  knowledge exchange, network activities focused on meetings of researchers for sharing  expertise and, depending on group resources (both financial and personnel), development  of collaborative research activities. The outcome of these activities is the enhanced  knowledge of the individual researchers within the network, contributions to conference  presentations and scholarly papers, input to stakeholders and the general public, organised  courses for students, junior and senior scientists. The most visible outcome are the  scientific results of the network activities, represented in the contributions of MACSUR  members to the impressive number of more than 200 collaborative papers in peer-reviewed  publications.   Here, we present a selection of overview and cross-disciplinary papers which include  contributions from MACSUR members. It highlights the major scientific challenges  addressed, and the methodological solutions and insights obtained. Over and above these  highlights, major achievements have been reached regarding data collection, data  processing, evaluation, model testing, modelling assessments of the effects of agriculture  on ecosystem services, policy, and development of scenarios. Details on these  achievements in the context of MACSUR can be found in our online publication FACCE  MACSUR Reports at http://ojs.macsur.eu.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2086
Permanent link to this record
 

 
Author Köchy, M.; Bannink, A.; Banse, M.; Brouwer, F.; Brüser, K.; Ewert, F.; Foyer, C.; Kipling, R.; Rötter, R.; Scollan, N.; Sinabell, F.
Title MACSUR Phase 1 Final Administrative Report: Public release Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-H3.5.3
Keywords Hub;
Abstract MACSUR’s foremost charge is improving the methodology for integrative inter-disciplinary modelling of European agriculture. In addition to technical changes, improvements include the involvement of stakeholders for setting research priorities, scenarios (if-then evaluations), and model parameters to more realistic or region-specific values. The Knowledge Hub currently brings together 300 members from 18 countries and has generated 300 scientific papers, over 500 presentations and 20 workshops and conferences within the first three years. Scientific results are communicated in conferences and workshops, where policymakers take part by invitation or because of professional interest. These events also provide opportunities for direct dialogues between policy­makers and scientists. The primary form of output of the research network is scientific publications that are cited in policy documents by relevant administrative depart­ments, ministries, intergovern­mental agencies, and directorate-generals, and non-governmental interest groups. MACSUR members also contribute directly to policy documents as authors, e.g. the EEA’s indicator report on CC impacts or the IPCC’s 5th assessment report’s chapter on food security.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2080
Permanent link to this record