toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Grosz, B.; Dechow, R.; Gebbert, S.; Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Kuhnert, M.; Yeluripati, J.; Haas, E.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Tao, F.; Roetter, R.; Kassie, B.; Cammarano, D.; Asseng, S.; Weihermueller, L.; Siebert, S.; Gaiser, T.; Ewert, F. doi  openurl
  Title The implication of input data aggregation on up-scaling soil organic carbon changes Type Journal Article
  Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 96 Issue Pages 361-377  
  Keywords Biogeochemical model; Data aggregation; Up-scaling error; Soil organic carbon; DIFFERENT SPATIAL SCALES; NITROUS-OXIDE EMISSIONS; MODELING SYSTEM; DATA; RESOLUTION; CROP MODELS; CLIMATE; LONG; PRODUCTIVITY; CROPLANDS; DAYCENT  
  Abstract In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low. (C)2017 Elsevier Ltd. All rights reserved.  
  Address 2017-09-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5176  
Permanent link to this record
 

 
Author (up) Haas, E.; R. Kiese; Klatt, S.; Hoffmann, H.; Zhao, G.; Ewert, F.; J. Constantin; Raynal, H.; Coucheney, E.; Lewan, E.; Sosa, C.; Dechow, R.; Grosz, B.; Eckersten, H.; Gaiser, T.; Kuhnert, M.; Smith, P.; Kersebaum, K.C.; C. Nendel; Specka, X.; Wang, E.; Zhao, Z.; Weihermüller, L. url  openurl
  Title Responses of soil nitrous oxide emissions and nitrate leaching on climate, soil and management input data aggregation: a biogeochemistry model ensemble study Type Conference Article
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium poster  
  Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4907  
Permanent link to this record
 

 
Author (up) Hjelkrem, A.-G.R.; Höglind, M.; van Oijen, M.; Schellberg, J.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title Sensitivity analysis and Bayesian calibration for testing robustness of the BASGRA model in different environments Type Journal Article
  Year 2017 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 359 Issue Pages 80-91  
  Keywords Metropolis-hasting; Morris method; Reducing complexity; Robustness  
  Abstract Highlights • The parameters to be fixed were consistent across sites. • Model calibration must be performed separately for each specific case. • Possible to reduce model parameters from 66 to 45. • Strong model reductions must be avoided. • The error term for the training data were characterised by timing (phase shift). Abstract Proper parameterisation and quantification of model uncertainty are two essential tasks in improvement and assessment of model performance. Bayesian calibration is a method that combines both tasks by quantifying probability distributions for model parameters and outputs. However, the method is rarely applied to complex models because of its high computational demand when used with high-dimensional parameter spaces. We therefore combined Bayesian calibration with sensitivity analysis, using the screening method by Morris (1991), in order to reduce model complexity by fixing parameters to which model output was only weakly sensitive to a nominal value. Further, the robustness of the model with respect to reduction in the number of free parameters were examined according to model discrepancy and output uncertainty. The process-based grassland model BASGRA was examined in the present study on two sites in Norway and in Germany, for two grass species (Phleum pratense and Arrhenatherum elatius). According to this study, a reduction of free model parameters from 66 to 45 was possible. The sensitivity analysis showed that the parameters to be fixed were consistent across sites (which differed in climate and soil conditions), while model calibration had to be performed separately for each combination of site and species. The output uncertainty decreased slightly, but still covered the field observations of aboveground biomass. Considering the training data, the mean square error for both the 66 and the 45 parameter model was dominated by errors in timing (phase shift), whereas no general pattern was found in errors when using the validation data. Stronger model reduction should be avoided, as the error term increased and output uncertainty was underestimated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5010  
Permanent link to this record
 

 
Author (up) Hoffmann, H.; Ewert, F. url  openurl
  Title Review on scaling methods for crop models Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C3.1  
  Keywords  
  Abstract Agricultural systems cover a range of organisational levels and spatial and temporal scales. To capture multi-scale problems of sustainable management in agricultural systems, Integrated assessment modelling (IAM) including crop models is often applied which require methods of scale changes (scaling methods). Scaling methods, however, are often not well understood and are therefore sources of uncertainty in models. The present report summarizes scaling methods as developed and applied in recent years (e.g. in SEAMLESS-IF and MACSUR) in a classification scheme based on Ewert et al. (2011, 2006). Scale changes refer to different spatial, temporal and functional scales with changes in extent, resolution, and coverage rate. Accordingly, there are a number of different scaling methods that can include data extrapolation, aggregation and disaggregation, sampling and nested simulation. Comparative quantitative analysis of alternative scaling methods are currently under way and covered by other reports in MACSUR and several publications (e.g. Ewert et al., 2014; Hoffmann et al., 2015; Zhao et al., 2015). The following classification of scaling methods assists to structure such analysis. Improved integration of scaling methods in IAM may help to overcome modelling limitations that are related to high data demand, complexity of models and scaling methods considered. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2094  
Permanent link to this record
 

 
Author (up) Hoffmann, H.; Gang, Z.; Van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Casellas, E.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Klatt, S.; Edwin, H.; Wang, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F. openurl 
  Title Sensitivity of crop models to spatial aggregation of soil and climate data Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Annual conference of the German/Austrian Agronomical Society & Max-Eyth-Society IS -  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5041  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: