|   | 
Details
   web
Records
Author (up) Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L.
Title Crop rotation modelling—A European model intercomparison Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 70 Issue Pages 98-111
Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth
Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4660
Permanent link to this record
 

 
Author (up) Kuhnert, M.; Yeluripati, J.; Smith, P.; Hoffmann, H.; Constantin, J.; Coucheney, E.; Dechow, R.; Eckersten, H.; Gaiser, T.; Grosz, B.; Haas, E.; Kersebaum, K.-C.; Kiese, R.; Klatt, S.; Lewan, E.; Nendel, C.; Raynal, H.; Sosa, C.; Specka, X.; Teixeira, E.; Wang, E.; Weihermüller, L.; Zhao, G.; Zhao, Z.; Ewert, F.
Title Impacts of soil and weather data aggregation in spatial modelling of net primary production of croplands Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Belrin (Germany) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Crop Modelling Symposium iCropM 2016, 2016-03-15 to 2016-03-17, Belrin
Notes Approved no
Call Number MA @ admin @ Serial 2579
Permanent link to this record
 

 
Author (up) Kuhnert, M.; Yeluripati, J.; Smith, P.; Hoffmann, H.; Constantin, J.; Coucheney, E.; Dechow, R.; Eckersten, H.; Gaiser, T.; Grosz, B.; Haas, E.; Kersebaum, K.-C.; Kiese, R.; Klatt, S.; Lewan, E.; Nendel, C.; Raynal, H.; Sosa, C.; Specka, X.; Teixeira, E.; Wang, E.; Weihermüller, L.; Zhao, G.; Zhao, Z.; Ogle, S.; Ewert, F.
Title Effects of climate data aggregation on regional net primary production modelling Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Toulouse (France) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 8th International Congress on Environmental Modelling and Software (iEMSs), 2016-07-10 to 2016-10-13, Toulouse, France
Notes Approved no
Call Number MA @ admin @ Serial 4896
Permanent link to this record
 

 
Author (up) Kuhnert, M.; Yeluripati, J.; Smith, P.; Hoffmann, H.; van Oijen, M.; Constantin, J.; Coucheney, E.; Dechow, R.; Eckersten, H.; Gaiser, T.; Grosz, B.; Haas, E.; Kersebaum, K.-C.; Kiese, R.; Klatt, S.; Lewan, E.; Nendel, C.; Raynal, H.; Sosa, C.; Specka, X.; Teixeira, E.; Wang, E.; Weihermüller, L.; Zhao, G.; Zhao, Z.; Ogle, S.; Ewert, F.
Title Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 88 Issue Pages 41-52
Keywords Net primary production; NPP; Scaling; Extreme events; Crop modelling; Climate Data; aggregation
Abstract For spatial crop and agro-systems modelling, there is often a discrepancy between the scale of measured driving data and the target resolution. Spatial data aggregation is often necessary, which can introduce additional uncertainty into the simulation results. Previous studies have shown that climate data aggregation has little effect on simulation of phenological stages, but effects on net primary production (NPP) might still be expected through changing the length of the growing season and the period of grain filling. This study investigates the impact of spatial climate data aggregation on NPP simulation results, applying eleven different models for the same study region (∼34,000 km2), situated in Western Germany. To isolate effects of climate, soil data and management were assumed to be constant over the entire study area and over the entire study period of 29 years. Two crops, winter wheat and silage maize, were tested as monocultures. Compared to the impact of climate data aggregation on yield, the effect on NPP is in a similar range, but is slightly lower, with only small impacts on averages over the entire simulation period and study region. Maximum differences between the five scales in the range of 1–100 km grid cells show changes of 0.4–7.8% and 0.0–4.8% for wheat and maize, respectively, whereas the simulated potential NPP averages of the models show a wide range (1.9–4.2 g C m−2 d−1 and 2.7–6.1 g C m−2 d−1for wheat and maize, respectively). The impact of the spatial aggregation was also tested for shorter time periods, to see if impacts over shorter periods attenuate over longer periods. The results show larger impacts for single years (up to 9.4% for wheat and up to 13.6% for maize). An analysis of extreme weather conditions shows an aggregation effect in vulnerability up to 12.8% and 15.5% between the different resolutions for wheat and maize, respectively. Simulations of NPP averages over larger areas (e.g. regional scale) and longer time periods (several years) are relatively insensitive to climate data.
Address 2016-09-13
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Newsletter July Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4775
Permanent link to this record
 

 
Author (up) Kuhnert, M.; Yeluripati, J.; Smith, P.; Hoffmann, H.; van Oijen, M.; Zhao, G.; Constantin, J.; Raynal, H.; Coucheney, E.; Lewan, E.; Eckersten, H.; Specka, X.; Sosa, C.; Kersebaum, K.-C.; Nendel, C.; Grosz, B.; Dechow, R.; Kiese, R.; Haas, E.; Klatt, S.; Teixeira, E.; Zhao, Z.; Wang, E.; Weihermüller, L.; Gaiser, T.; Ewert, F.
Title Impact of climate aggregation over different scales on regional NPP modelling Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Vienna (Austria) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference European Geosciences Union General Assembly 2016, 2016-04-17 to 2016-04-22, Vienna
Notes Approved no
Call Number MA @ admin @ Serial 2578
Permanent link to this record