|   | 
Details
   web
Records
Author Zhao, G.; Siebert, S.; Enders, A.; Rezaei, E.E.; Yan, C.; Ewert, F.
Title Demand for multi-scale weather data for regional crop modeling Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 200 Issue Pages 156-171
Keywords multi-scale; spatial heterogeneity; spatial resolution; crop model; climate variability; climate-change scenarios; integrated assessment; large-scale; phenological development; agricultural systems; spatial-resolution; data aggregation; european-union; winter-wheat; input data
Abstract (up) A spatial resolution needs to be determined prior to using models to simulate crop yields at a regional scale, but a dilemma exists in compromising between different demands. A fine spatial resolution demands extensive computation load for input data assembly, model runs, and output analysis. A coarse spatial resolution could result in loss of spatial detail in variability. This paper studied the impact of spatial resolution, data aggregation and spatial heterogeneity of weather data on simulations of crop yields, thus providing guidelines for choosing a proper spatial resolution for simulations of crop yields at regional scale. Using a process-based crop model SIMPLACE (LINTUL2) and daily weather data at 1 km resolution we simulated a continuous rainfed winter wheat cropping system at the national scale of Germany. Then we aggregated the weather data to four resolutions from 10 to 100 km, repeated the simulation, compared them with the 1 km results, and correlated the difference with the intra-pixel heterogeneity quantified by an ensemble of four semivariogram models. Aggregation of weather data had small effects over regions with a flat terrain located in northern Germany, but large effects over southern regions with a complex topography. The spatial distribution of yield bias at different spatial resolutions was consistent with the intra-pixel spatial heterogeneity of the terrain and a log-log linear relationship between them was established. By using this relationship we demonstrated the way to optimize the model resolution to minimize both the number of simulation runs and the expected loss of spatial detail in variability due to aggregation effects. We concluded that a high spatial resolution is desired for regions with high spatial environmental heterogeneity, and vice versa. This calls for the development of multi-scale approaches in regional and global crop modeling. The obtained results require substantiation for other production situations, crops, output variables and for different crop models. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4753
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.
Title MACSUR CropM – progress overview Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Activities in the first 1 ½ years of CropM were related to key issues identified as critical at the beginning of the FACCE MACSUR the knowledge Hub. These include: Model intercomparisonGeneration of new data for model improvementMethods for scaling and model linkingUncertainty analysisBuilding research capacity Climate scenario data for crop models The key ambition of CropM has been to develop scientific excellence on methods for a comprehensive assessment of climate change impact, adaptation and policy on European crop production, agriculture and food security. Much progress has been made in developing a first shared continental assessment and tool for: A range of important cropsImportant crop rotationsAdvanced scaling methodsAdvanced link to farm and sector modelsNovel impact uncertainty assessment and reportingState-of-the-art scenario construction A number of concrete studies towards this aim have been launched in CropM workpackages (WPs): WP1-2: Two multi-facetted studies on crop rotation, launched in summer 2013 WP3: comprehensive scaling exercises, launched in March 2013WP4: Studies on (a) Climate scenario development, (b) impact response surface method and (c) Extremes, launched in summer 2013WP5: Analysis of transect across Europe with temperature effect (Space for Time) In addition, extended activities related to capacity building including several PhD courses (WP5) workshops (in WPs1-4) and an International Symposium (10-12 Feb, Oslo, Norway) have been organized. Present and future work is and will be focused on framing and advancing crop modelling as integrated part of comprehensive climate risk assessment and modelling of  agricultural systems for food security from farm to supra-national level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5099
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Hoehn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Roetter, R.P.
Title Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment Type Journal Article
Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 260-274
Keywords Wheat adaptation; Sensitivity analysis; Crop model ensemble; Rainfed, Mediterranean cropping system; AOCK concept; Iberian Peninsula; Simulation-Model; Change Impacts; Crop; Uncertainty; Ensemble; Europe; Yield; Productivity; Irrigation
Abstract (up) Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T.),[CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty. (C) 2017 Elsevier Ltd. All rights reserved.
Address 2018-01-25
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5184
Permanent link to this record
 

 
Author Hoffmann, H.; Ewert, F.
Title Review on scaling methods for crop models Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C3.1
Keywords
Abstract (up) Agricultural systems cover a range of organisational levels and spatial and temporal scales. To capture multi-scale problems of sustainable management in agricultural systems, Integrated assessment modelling (IAM) including crop models is often applied which require methods of scale changes (scaling methods). Scaling methods, however, are often not well understood and are therefore sources of uncertainty in models. The present report summarizes scaling methods as developed and applied in recent years (e.g. in SEAMLESS-IF and MACSUR) in a classification scheme based on Ewert et al. (2011, 2006). Scale changes refer to different spatial, temporal and functional scales with changes in extent, resolution, and coverage rate. Accordingly, there are a number of different scaling methods that can include data extrapolation, aggregation and disaggregation, sampling and nested simulation. Comparative quantitative analysis of alternative scaling methods are currently under way and covered by other reports in MACSUR and several publications (e.g. Ewert et al., 2014; Hoffmann et al., 2015; Zhao et al., 2015). The following classification of scaling methods assists to structure such analysis. Improved integration of scaling methods in IAM may help to overcome modelling limitations that are related to high data demand, complexity of models and scaling methods considered. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2094
Permanent link to this record
 

 
Author van Bussel, L.G.J.; Stehfest, E.; Siebert, S.; Müller, C.; Ewert, F.
Title Simulation of the phenological development of wheat and maize at the global scale Type Journal Article
Year 2015 Publication Global Ecology and Biogeography Abbreviated Journal Glob. Ecol. Biogeogr.
Volume 24 Issue 9 Pages 1018-1029
Keywords Agricultural management; crop calendars; cultivar; variety characteristics; global crop modelling; global harvest dates; phenology; climate-change; winter-wheat; annual crops; photoperiod sensitivity; geographical variation; temperature; responses; adaptation; cultivars; model
Abstract (up) AimTo derive location-specific parameters that reflect the geographic differences among cultivars in vernalization requirements, sensitivity to day length (photoperiod) and temperature, which can be used to simulate the phenological development of wheat and maize at the global scale. LocationGlobal. Methods Based on crop calendar observations and literature describing the large-scale patterns of phenological characteristics of cultivars, we developed algorithms to compute location-specific parameters to represent this large-scale pattern. Vernalization requirements were related to the duration and coldness of winter, sensitivity to day length was assumed to be represented by the minimum and maximum day lengths occurring at a location, and sensitivity to temperature was related to temperature conditions during the vegetative development phase of the crop. Results Application of the derived location-specific parameters resulted in high agreement between simulated and observed lengths of the cropping period. Agreement was especially high for wheat, with mean absolute errors of less than 3 weeks. In the main maize cropping regions, cropping periods were over- and underestimated by 0.5-1.5 months. We also found that interannual variability in simulated wheat harvest dates was more realistic when accounting for photoperiod effects. Main conclusions The methodology presented here provides a good basis for modelling the phenological characteristics of cultivars at the global scale. We show that current global patterns of growing season length as described in cropping calendars can be largely reproduced by phenology models if location-specific parameters are derived from temperature and day length indicators. Growing seasons can be modelled more accurately for wheat than for maize, especially in warm regions. Our method for computing parameters for phenology models from temperature and day length offers opportunities to improve the simulation of crop productivity by crop simulation models developed for large spatial areas and for long-term climate impact projections that account for adaptation in the selection of varieties
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-822x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4729
Permanent link to this record