toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P. url  doi
openurl 
  Title An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment Type Journal Article
  Year 2013 Publication Water Resource Management Abbreviated Journal Water Resource Manage.  
  Volume 27 Issue 10 Pages 3607-3622  
  Keywords discrete stochastic programming; climate change variability; adaptation to climate change; net evapotranspiration and irrigation requirements; water availability; epic crops model; economic impact of climate change; precipitation; uncertainty; region; series; yield; model; scale; wheat; gis  
  Abstract Climate change is likely to have a profound effect on many agricultural variables, although the extent of its influence will vary over the course of the annual farm management cycle. Consequently, the effect of different and interconnected physical, technical and economic factors must be modeled in order to estimate the effects of climate change on agricultural productivity. Such modeling commonly makes use of indicators that summarize the among environmental factors that are considered when farmers plan their activities. This study uses net evapotranspiration (ETN), estimated using EPIC, as a proxy index for the physical factors considered by farmers when managing irrigation. Recent trends suggest that the probability distribution function of ETN may continue to change in the near future due to changes in the irrigation needs of crops. Also, water availability may continue to vary due to changes in the rainfall regime. The impacts of the uncertainties related to these changes on costs are evaluated using a Discrete Stochastic Programming model representing an irrigable Mediterranean area where limited water is supplied from a reservoir. In this context, adaptation to climate change can be best supported by improvements to the collective irrigation systems, rather than by measures aimed at individual farms such as those contained within the rural development policy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-4741 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4487  
Permanent link to this record
 

 
Author (up) Dono, G.; Cortignani, R.; Doro, L.; Roggero, P.P. url  openurl
  Title The adaptation of farm and awareness of ongoing climate change (CC) Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Farm planning is based on awareness of climate variability, here assumed to depend on experience gained over the years, and to generate expectations on climatic variables. Expectations are based on probability distributions (pdfs) estimated on climate data and used to generate managing choices by means of Discrete Stochastic Programming. The model simulates the income losses in case farmers do not recognize the ongoing CC, and continue to plan assuming climate stability. In particular, the use of resources in 2010 is simulated based on the pdfs of the early 2000s, despite CC has changed the probabilities of the various states of nature. The model, calibrated with Positive Mathematical Programming, generates a 0.9% income increase when is allowed to adapt to 2010 climate pdfs. The model is also calibrated according to pdfs of 2010, i.e. recognizing CC: in this case income falls of 0.7% when farmers are simulated to use their soil mistakenly based of the 2000 pdfs. Given the short period of CC, the differences represent an appreciable error that farmers may be already committing. Properly specifying with the CC at local level can help building farmers’ awareness on it, and to properly manage their resources, recovering profitability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5131  
Permanent link to this record
 

 
Author (up) Doro, L.; Jones, C.; Williams, J.R.; Norfleet, M.L.; Izaurralde, R.C.; Wang, X.; Jeong, J. doi  openurl
  Title The Variable Saturation Hydraulic Conductivity Method for Improving Soil Water Content Simulation in EPIC and APEX Models Type Journal Article
  Year 2017 Publication Vadose Zone Journal Abbreviated Journal Vadose Zone Journal  
  Volume 16 Issue 13 Pages  
  Keywords Conservation Effects Assessment; Runoff Simulation; Unsaturated Soils; United-States; Porous-Media; Moisture; Flow; Productivity; Transport; Denitrification  
  Abstract Soil water percolation is a key process in the life cycle of water in fields, watersheds, and river basins. The Environmental Policy Integrated Climate (EPIC) and the Agricultural Policy/Environmental eXtender (APEX) are continuous models developed for evaluating the environmental effects of agricultural management. Traditionally, these models have simulated soil water percolation processes using a tipping-bucket approach, with the rate of flow limited by the saturated hydraulic conductivity. This simple approach often leads to inaccuracy in simulating elevated soil water conditions where soil water content (SWC) levels may remain above field capacity under prolonged wet weather periods or limited drainage. To overcome this deficiency, a new sub-model, the variable saturation hydraulic conductivity (VSHC) method, was developed for simulating soil water percolation processes using a nonlinear equation to estimate the effective hydraulic conductivity as a function of the SWC and soil properties. The VSHC method was evaluated at three sites in the United States and two sites in Europe. In addition, a numerical solution of the Richards equation was used as a benchmark for SWC comparison. Results show that the VSHC method substantially improves the accuracy of the SWC simulation in long-term simulations, particularly during wet periods. At the watershed scale, results on the Riesel Y2 watershed indicate that the VSHC method enhances model performance in the high-flow regime of channel peak flows because of the improved estimation of SWC, which implies that the improved SWC simulation at the field scale is beneficial to hydrologic modeling at the watershed scale.  
  Address 2018-09-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-1663 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5208  
Permanent link to this record
 

 
Author (up) Ewert, F.; van Bussel, L.G.J.; Zhao, G.; Hoffmann, H.; Gaiser, T.; Specka, X.; Nendel, C.; Kersebaum, K.-C.; Sosa, C.; Lewan, E.; Yeluripati, J.; Kuhnert, M.; Tao, F.; Rötter, R.P.; Constantin, J.; Raynal, H.; Wallach, D.; Teixeira, E.; Grosz, B.; Bach, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Kiese, R.; Haas, E.; Eckersten, H.; Trombi, G.; Bindi, M.; Klein, C.; Biernath, C.; Heinlein, F.; Priesack, E.; Cammarano, D.; Asseng, S.; Elliott, J.; Glotter, M.; Basso, B.; Baigorria, G.A.; Romero, C.C.; Moriondo, M. doi  openurl
  Title Uncertainties in Scaling up Crop Models for Large Area Climate-change Impact Assessments Type Book Chapter
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 261-277  
  Keywords CropM;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Imperial College Press Place of Publication London Editor Rosenzweig, C.; Hillel, D.  
  Language Summary Language Original Title  
  Series Editor Series Title Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments — Joint Publication with American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America (In 2 Parts) Abbreviated Series Title  
  Series Volume ICP Series on Climate Change Impacts, Adaptation, Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2427  
Permanent link to this record
 

 
Author (up) Grosz, B.; Dechow, R.; Gebbert, S.; Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Kuhnert, M.; Yeluripati, J.; Haas, E.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Tao, F.; Roetter, R.; Kassie, B.; Cammarano, D.; Asseng, S.; Weihermueller, L.; Siebert, S.; Gaiser, T.; Ewert, F. doi  openurl
  Title The implication of input data aggregation on up-scaling soil organic carbon changes Type Journal Article
  Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 96 Issue Pages 361-377  
  Keywords Biogeochemical model; Data aggregation; Up-scaling error; Soil organic carbon; DIFFERENT SPATIAL SCALES; NITROUS-OXIDE EMISSIONS; MODELING SYSTEM; DATA; RESOLUTION; CROP MODELS; CLIMATE; LONG; PRODUCTIVITY; CROPLANDS; DAYCENT  
  Abstract In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low. (C)2017 Elsevier Ltd. All rights reserved.  
  Address 2017-09-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5176  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: